![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > drngdimgt0 | Structured version Visualization version GIF version |
Description: The dimension of a vector space that is also a division ring is greater than zero. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
Ref | Expression |
---|---|
drngdimgt0 | β’ ((πΉ β LVec β§ πΉ β DivRing) β 0 < (dimβπΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1m1e0 12288 | . 2 β’ (1 β 1) = 0 | |
2 | simpl 482 | . . . . 5 β’ ((πΉ β LVec β§ πΉ β DivRing) β πΉ β LVec) | |
3 | simpr 484 | . . . . . 6 β’ ((πΉ β LVec β§ πΉ β DivRing) β πΉ β DivRing) | |
4 | drngring 20594 | . . . . . 6 β’ (πΉ β DivRing β πΉ β Ring) | |
5 | eqid 2726 | . . . . . . 7 β’ (BaseβπΉ) = (BaseβπΉ) | |
6 | eqid 2726 | . . . . . . 7 β’ (1rβπΉ) = (1rβπΉ) | |
7 | 5, 6 | ringidcl 20165 | . . . . . 6 β’ (πΉ β Ring β (1rβπΉ) β (BaseβπΉ)) |
8 | 3, 4, 7 | 3syl 18 | . . . . 5 β’ ((πΉ β LVec β§ πΉ β DivRing) β (1rβπΉ) β (BaseβπΉ)) |
9 | eqid 2726 | . . . . . . 7 β’ (0gβπΉ) = (0gβπΉ) | |
10 | 9, 6 | drngunz 20606 | . . . . . 6 β’ (πΉ β DivRing β (1rβπΉ) β (0gβπΉ)) |
11 | 10 | adantl 481 | . . . . 5 β’ ((πΉ β LVec β§ πΉ β DivRing) β (1rβπΉ) β (0gβπΉ)) |
12 | eqid 2726 | . . . . . 6 β’ (LSpanβπΉ) = (LSpanβπΉ) | |
13 | eqid 2726 | . . . . . 6 β’ (πΉ βΎs ((LSpanβπΉ)β{(1rβπΉ)})) = (πΉ βΎs ((LSpanβπΉ)β{(1rβπΉ)})) | |
14 | 5, 12, 9, 13 | lsatdim 33220 | . . . . 5 β’ ((πΉ β LVec β§ (1rβπΉ) β (BaseβπΉ) β§ (1rβπΉ) β (0gβπΉ)) β (dimβ(πΉ βΎs ((LSpanβπΉ)β{(1rβπΉ)}))) = 1) |
15 | 2, 8, 11, 14 | syl3anc 1368 | . . . 4 β’ ((πΉ β LVec β§ πΉ β DivRing) β (dimβ(πΉ βΎs ((LSpanβπΉ)β{(1rβπΉ)}))) = 1) |
16 | lveclmod 20954 | . . . . . . 7 β’ (πΉ β LVec β πΉ β LMod) | |
17 | 16 | adantr 480 | . . . . . 6 β’ ((πΉ β LVec β§ πΉ β DivRing) β πΉ β LMod) |
18 | 8 | snssd 4807 | . . . . . 6 β’ ((πΉ β LVec β§ πΉ β DivRing) β {(1rβπΉ)} β (BaseβπΉ)) |
19 | eqid 2726 | . . . . . . 7 β’ (LSubSpβπΉ) = (LSubSpβπΉ) | |
20 | 5, 19, 12 | lspcl 20823 | . . . . . 6 β’ ((πΉ β LMod β§ {(1rβπΉ)} β (BaseβπΉ)) β ((LSpanβπΉ)β{(1rβπΉ)}) β (LSubSpβπΉ)) |
21 | 17, 18, 20 | syl2anc 583 | . . . . 5 β’ ((πΉ β LVec β§ πΉ β DivRing) β ((LSpanβπΉ)β{(1rβπΉ)}) β (LSubSpβπΉ)) |
22 | 13 | lssdimle 33210 | . . . . 5 β’ ((πΉ β LVec β§ ((LSpanβπΉ)β{(1rβπΉ)}) β (LSubSpβπΉ)) β (dimβ(πΉ βΎs ((LSpanβπΉ)β{(1rβπΉ)}))) β€ (dimβπΉ)) |
23 | 2, 21, 22 | syl2anc 583 | . . . 4 β’ ((πΉ β LVec β§ πΉ β DivRing) β (dimβ(πΉ βΎs ((LSpanβπΉ)β{(1rβπΉ)}))) β€ (dimβπΉ)) |
24 | 15, 23 | eqbrtrrd 5165 | . . 3 β’ ((πΉ β LVec β§ πΉ β DivRing) β 1 β€ (dimβπΉ)) |
25 | 1nn0 12492 | . . . 4 β’ 1 β β0 | |
26 | dimcl 33205 | . . . . 5 β’ (πΉ β LVec β (dimβπΉ) β β0*) | |
27 | 26 | adantr 480 | . . . 4 β’ ((πΉ β LVec β§ πΉ β DivRing) β (dimβπΉ) β β0*) |
28 | xnn0lem1lt 13229 | . . . 4 β’ ((1 β β0 β§ (dimβπΉ) β β0*) β (1 β€ (dimβπΉ) β (1 β 1) < (dimβπΉ))) | |
29 | 25, 27, 28 | sylancr 586 | . . 3 β’ ((πΉ β LVec β§ πΉ β DivRing) β (1 β€ (dimβπΉ) β (1 β 1) < (dimβπΉ))) |
30 | 24, 29 | mpbid 231 | . 2 β’ ((πΉ β LVec β§ πΉ β DivRing) β (1 β 1) < (dimβπΉ)) |
31 | 1, 30 | eqbrtrrid 5177 | 1 β’ ((πΉ β LVec β§ πΉ β DivRing) β 0 < (dimβπΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2934 β wss 3943 {csn 4623 class class class wbr 5141 βcfv 6537 (class class class)co 7405 0cc0 11112 1c1 11113 < clt 11252 β€ cle 11253 β cmin 11448 β0cn0 12476 β0*cxnn0 12548 Basecbs 17153 βΎs cress 17182 0gc0g 17394 1rcur 20086 Ringcrg 20138 DivRingcdr 20587 LModclmod 20706 LSubSpclss 20778 LSpanclspn 20818 LVecclvec 20950 dimcldim 33201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-reg 9589 ax-inf2 9638 ax-ac2 10460 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-rpss 7710 df-om 7853 df-1st 7974 df-2nd 7975 df-tpos 8212 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-oadd 8471 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-oi 9507 df-r1 9761 df-rank 9762 df-dju 9898 df-card 9936 df-acn 9939 df-ac 10113 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-xnn0 12549 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13491 df-hash 14296 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-sca 17222 df-vsca 17223 df-tset 17225 df-ple 17226 df-ocomp 17227 df-0g 17396 df-mre 17539 df-mrc 17540 df-mri 17541 df-acs 17542 df-proset 18260 df-drs 18261 df-poset 18278 df-ipo 18493 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18714 df-grp 18866 df-minusg 18867 df-sbg 18868 df-subg 19050 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-ur 20087 df-ring 20140 df-oppr 20236 df-dvdsr 20259 df-unit 20260 df-invr 20290 df-nzr 20415 df-drng 20589 df-lmod 20708 df-lss 20779 df-lsp 20819 df-lbs 20923 df-lvec 20951 df-lindf 21701 df-linds 21702 df-dim 33202 |
This theorem is referenced by: extdggt0 33254 |
Copyright terms: Public domain | W3C validator |