![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > drngdimgt0 | Structured version Visualization version GIF version |
Description: The dimension of a vector space that is also a division ring is greater than zero. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
Ref | Expression |
---|---|
drngdimgt0 | β’ ((πΉ β LVec β§ πΉ β DivRing) β 0 < (dimβπΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1m1e0 12280 | . 2 β’ (1 β 1) = 0 | |
2 | simpl 483 | . . . . 5 β’ ((πΉ β LVec β§ πΉ β DivRing) β πΉ β LVec) | |
3 | simpr 485 | . . . . . 6 β’ ((πΉ β LVec β§ πΉ β DivRing) β πΉ β DivRing) | |
4 | drngring 20314 | . . . . . 6 β’ (πΉ β DivRing β πΉ β Ring) | |
5 | eqid 2732 | . . . . . . 7 β’ (BaseβπΉ) = (BaseβπΉ) | |
6 | eqid 2732 | . . . . . . 7 β’ (1rβπΉ) = (1rβπΉ) | |
7 | 5, 6 | ringidcl 20076 | . . . . . 6 β’ (πΉ β Ring β (1rβπΉ) β (BaseβπΉ)) |
8 | 3, 4, 7 | 3syl 18 | . . . . 5 β’ ((πΉ β LVec β§ πΉ β DivRing) β (1rβπΉ) β (BaseβπΉ)) |
9 | eqid 2732 | . . . . . . 7 β’ (0gβπΉ) = (0gβπΉ) | |
10 | 9, 6 | drngunz 20326 | . . . . . 6 β’ (πΉ β DivRing β (1rβπΉ) β (0gβπΉ)) |
11 | 10 | adantl 482 | . . . . 5 β’ ((πΉ β LVec β§ πΉ β DivRing) β (1rβπΉ) β (0gβπΉ)) |
12 | eqid 2732 | . . . . . 6 β’ (LSpanβπΉ) = (LSpanβπΉ) | |
13 | eqid 2732 | . . . . . 6 β’ (πΉ βΎs ((LSpanβπΉ)β{(1rβπΉ)})) = (πΉ βΎs ((LSpanβπΉ)β{(1rβπΉ)})) | |
14 | 5, 12, 9, 13 | lsatdim 32690 | . . . . 5 β’ ((πΉ β LVec β§ (1rβπΉ) β (BaseβπΉ) β§ (1rβπΉ) β (0gβπΉ)) β (dimβ(πΉ βΎs ((LSpanβπΉ)β{(1rβπΉ)}))) = 1) |
15 | 2, 8, 11, 14 | syl3anc 1371 | . . . 4 β’ ((πΉ β LVec β§ πΉ β DivRing) β (dimβ(πΉ βΎs ((LSpanβπΉ)β{(1rβπΉ)}))) = 1) |
16 | lveclmod 20709 | . . . . . . 7 β’ (πΉ β LVec β πΉ β LMod) | |
17 | 16 | adantr 481 | . . . . . 6 β’ ((πΉ β LVec β§ πΉ β DivRing) β πΉ β LMod) |
18 | 8 | snssd 4811 | . . . . . 6 β’ ((πΉ β LVec β§ πΉ β DivRing) β {(1rβπΉ)} β (BaseβπΉ)) |
19 | eqid 2732 | . . . . . . 7 β’ (LSubSpβπΉ) = (LSubSpβπΉ) | |
20 | 5, 19, 12 | lspcl 20579 | . . . . . 6 β’ ((πΉ β LMod β§ {(1rβπΉ)} β (BaseβπΉ)) β ((LSpanβπΉ)β{(1rβπΉ)}) β (LSubSpβπΉ)) |
21 | 17, 18, 20 | syl2anc 584 | . . . . 5 β’ ((πΉ β LVec β§ πΉ β DivRing) β ((LSpanβπΉ)β{(1rβπΉ)}) β (LSubSpβπΉ)) |
22 | 13 | lssdimle 32680 | . . . . 5 β’ ((πΉ β LVec β§ ((LSpanβπΉ)β{(1rβπΉ)}) β (LSubSpβπΉ)) β (dimβ(πΉ βΎs ((LSpanβπΉ)β{(1rβπΉ)}))) β€ (dimβπΉ)) |
23 | 2, 21, 22 | syl2anc 584 | . . . 4 β’ ((πΉ β LVec β§ πΉ β DivRing) β (dimβ(πΉ βΎs ((LSpanβπΉ)β{(1rβπΉ)}))) β€ (dimβπΉ)) |
24 | 15, 23 | eqbrtrrd 5171 | . . 3 β’ ((πΉ β LVec β§ πΉ β DivRing) β 1 β€ (dimβπΉ)) |
25 | 1nn0 12484 | . . . 4 β’ 1 β β0 | |
26 | dimcl 32676 | . . . . 5 β’ (πΉ β LVec β (dimβπΉ) β β0*) | |
27 | 26 | adantr 481 | . . . 4 β’ ((πΉ β LVec β§ πΉ β DivRing) β (dimβπΉ) β β0*) |
28 | xnn0lem1lt 13219 | . . . 4 β’ ((1 β β0 β§ (dimβπΉ) β β0*) β (1 β€ (dimβπΉ) β (1 β 1) < (dimβπΉ))) | |
29 | 25, 27, 28 | sylancr 587 | . . 3 β’ ((πΉ β LVec β§ πΉ β DivRing) β (1 β€ (dimβπΉ) β (1 β 1) < (dimβπΉ))) |
30 | 24, 29 | mpbid 231 | . 2 β’ ((πΉ β LVec β§ πΉ β DivRing) β (1 β 1) < (dimβπΉ)) |
31 | 1, 30 | eqbrtrrid 5183 | 1 β’ ((πΉ β LVec β§ πΉ β DivRing) β 0 < (dimβπΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 β wss 3947 {csn 4627 class class class wbr 5147 βcfv 6540 (class class class)co 7405 0cc0 11106 1c1 11107 < clt 11244 β€ cle 11245 β cmin 11440 β0cn0 12468 β0*cxnn0 12540 Basecbs 17140 βΎs cress 17169 0gc0g 17381 1rcur 19998 Ringcrg 20049 DivRingcdr 20307 LModclmod 20463 LSubSpclss 20534 LSpanclspn 20574 LVecclvec 20705 dimcldim 32672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-reg 9583 ax-inf2 9632 ax-ac2 10454 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-rpss 7709 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-oi 9501 df-r1 9755 df-rank 9756 df-dju 9892 df-card 9930 df-acn 9933 df-ac 10107 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-xnn0 12541 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-hash 14287 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-tset 17212 df-ple 17213 df-ocomp 17214 df-0g 17383 df-mre 17526 df-mrc 17527 df-mri 17528 df-acs 17529 df-proset 18244 df-drs 18245 df-poset 18262 df-ipo 18477 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-subg 18997 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-oppr 20142 df-dvdsr 20163 df-unit 20164 df-invr 20194 df-nzr 20284 df-drng 20309 df-lmod 20465 df-lss 20535 df-lsp 20575 df-lbs 20678 df-lvec 20706 df-lindf 21352 df-linds 21353 df-dim 32673 |
This theorem is referenced by: extdggt0 32724 |
Copyright terms: Public domain | W3C validator |