Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > drngdimgt0 | Structured version Visualization version GIF version |
Description: The dimension of a vector space that is also a division ring is greater than zero. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
Ref | Expression |
---|---|
drngdimgt0 | ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 0 < (dim‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1m1e0 12028 | . 2 ⊢ (1 − 1) = 0 | |
2 | simpl 482 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 𝐹 ∈ LVec) | |
3 | simpr 484 | . . . . . 6 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 𝐹 ∈ DivRing) | |
4 | drngring 19979 | . . . . . 6 ⊢ (𝐹 ∈ DivRing → 𝐹 ∈ Ring) | |
5 | eqid 2739 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
6 | eqid 2739 | . . . . . . 7 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
7 | 5, 6 | ringidcl 19788 | . . . . . 6 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ (Base‘𝐹)) |
8 | 3, 4, 7 | 3syl 18 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1r‘𝐹) ∈ (Base‘𝐹)) |
9 | eqid 2739 | . . . . . . 7 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
10 | 9, 6 | drngunz 19987 | . . . . . 6 ⊢ (𝐹 ∈ DivRing → (1r‘𝐹) ≠ (0g‘𝐹)) |
11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1r‘𝐹) ≠ (0g‘𝐹)) |
12 | eqid 2739 | . . . . . 6 ⊢ (LSpan‘𝐹) = (LSpan‘𝐹) | |
13 | eqid 2739 | . . . . . 6 ⊢ (𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)})) = (𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)})) | |
14 | 5, 12, 9, 13 | lsatdim 31679 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ (1r‘𝐹) ∈ (Base‘𝐹) ∧ (1r‘𝐹) ≠ (0g‘𝐹)) → (dim‘(𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)}))) = 1) |
15 | 2, 8, 11, 14 | syl3anc 1369 | . . . 4 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (dim‘(𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)}))) = 1) |
16 | lveclmod 20349 | . . . . . . 7 ⊢ (𝐹 ∈ LVec → 𝐹 ∈ LMod) | |
17 | 16 | adantr 480 | . . . . . 6 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 𝐹 ∈ LMod) |
18 | 8 | snssd 4747 | . . . . . 6 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → {(1r‘𝐹)} ⊆ (Base‘𝐹)) |
19 | eqid 2739 | . . . . . . 7 ⊢ (LSubSp‘𝐹) = (LSubSp‘𝐹) | |
20 | 5, 19, 12 | lspcl 20219 | . . . . . 6 ⊢ ((𝐹 ∈ LMod ∧ {(1r‘𝐹)} ⊆ (Base‘𝐹)) → ((LSpan‘𝐹)‘{(1r‘𝐹)}) ∈ (LSubSp‘𝐹)) |
21 | 17, 18, 20 | syl2anc 583 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → ((LSpan‘𝐹)‘{(1r‘𝐹)}) ∈ (LSubSp‘𝐹)) |
22 | 13 | lssdimle 31670 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ ((LSpan‘𝐹)‘{(1r‘𝐹)}) ∈ (LSubSp‘𝐹)) → (dim‘(𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)}))) ≤ (dim‘𝐹)) |
23 | 2, 21, 22 | syl2anc 583 | . . . 4 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (dim‘(𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)}))) ≤ (dim‘𝐹)) |
24 | 15, 23 | eqbrtrrd 5102 | . . 3 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 1 ≤ (dim‘𝐹)) |
25 | 1nn0 12232 | . . . 4 ⊢ 1 ∈ ℕ0 | |
26 | dimcl 31667 | . . . . 5 ⊢ (𝐹 ∈ LVec → (dim‘𝐹) ∈ ℕ0*) | |
27 | 26 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (dim‘𝐹) ∈ ℕ0*) |
28 | xnn0lem1lt 12960 | . . . 4 ⊢ ((1 ∈ ℕ0 ∧ (dim‘𝐹) ∈ ℕ0*) → (1 ≤ (dim‘𝐹) ↔ (1 − 1) < (dim‘𝐹))) | |
29 | 25, 27, 28 | sylancr 586 | . . 3 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1 ≤ (dim‘𝐹) ↔ (1 − 1) < (dim‘𝐹))) |
30 | 24, 29 | mpbid 231 | . 2 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1 − 1) < (dim‘𝐹)) |
31 | 1, 30 | eqbrtrrid 5114 | 1 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 0 < (dim‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ⊆ wss 3891 {csn 4566 class class class wbr 5078 ‘cfv 6430 (class class class)co 7268 0cc0 10855 1c1 10856 < clt 10993 ≤ cle 10994 − cmin 11188 ℕ0cn0 12216 ℕ0*cxnn0 12288 Basecbs 16893 ↾s cress 16922 0gc0g 17131 1rcur 19718 Ringcrg 19764 DivRingcdr 19972 LModclmod 20104 LSubSpclss 20174 LSpanclspn 20214 LVecclvec 20345 dimcldim 31663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-reg 9312 ax-inf2 9360 ax-ac2 10203 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-rpss 7567 df-om 7701 df-1st 7817 df-2nd 7818 df-tpos 8026 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-oadd 8285 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-oi 9230 df-r1 9506 df-rank 9507 df-dju 9643 df-card 9681 df-acn 9684 df-ac 9856 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-xnn0 12289 df-z 12303 df-dec 12420 df-uz 12565 df-fz 13222 df-hash 14026 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-sca 16959 df-vsca 16960 df-tset 16962 df-ple 16963 df-ocomp 16964 df-0g 17133 df-mre 17276 df-mrc 17277 df-mri 17278 df-acs 17279 df-proset 17994 df-drs 17995 df-poset 18012 df-ipo 18227 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-submnd 18412 df-grp 18561 df-minusg 18562 df-sbg 18563 df-subg 18733 df-cmn 19369 df-abl 19370 df-mgp 19702 df-ur 19719 df-ring 19766 df-oppr 19843 df-dvdsr 19864 df-unit 19865 df-invr 19895 df-drng 19974 df-lmod 20106 df-lss 20175 df-lsp 20215 df-lbs 20318 df-lvec 20346 df-nzr 20510 df-lindf 20994 df-linds 20995 df-dim 31664 |
This theorem is referenced by: extdggt0 31711 |
Copyright terms: Public domain | W3C validator |