![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > drngdimgt0 | Structured version Visualization version GIF version |
Description: The dimension of a vector space that is also a division ring is greater than zero. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
Ref | Expression |
---|---|
drngdimgt0 | ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 0 < (dim‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1m1e0 12365 | . 2 ⊢ (1 − 1) = 0 | |
2 | simpl 482 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 𝐹 ∈ LVec) | |
3 | simpr 484 | . . . . . 6 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 𝐹 ∈ DivRing) | |
4 | drngring 20758 | . . . . . 6 ⊢ (𝐹 ∈ DivRing → 𝐹 ∈ Ring) | |
5 | eqid 2740 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
6 | eqid 2740 | . . . . . . 7 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
7 | 5, 6 | ringidcl 20289 | . . . . . 6 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ (Base‘𝐹)) |
8 | 3, 4, 7 | 3syl 18 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1r‘𝐹) ∈ (Base‘𝐹)) |
9 | eqid 2740 | . . . . . . 7 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
10 | 9, 6 | drngunz 20769 | . . . . . 6 ⊢ (𝐹 ∈ DivRing → (1r‘𝐹) ≠ (0g‘𝐹)) |
11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1r‘𝐹) ≠ (0g‘𝐹)) |
12 | eqid 2740 | . . . . . 6 ⊢ (LSpan‘𝐹) = (LSpan‘𝐹) | |
13 | eqid 2740 | . . . . . 6 ⊢ (𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)})) = (𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)})) | |
14 | 5, 12, 9, 13 | lsatdim 33630 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ (1r‘𝐹) ∈ (Base‘𝐹) ∧ (1r‘𝐹) ≠ (0g‘𝐹)) → (dim‘(𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)}))) = 1) |
15 | 2, 8, 11, 14 | syl3anc 1371 | . . . 4 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (dim‘(𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)}))) = 1) |
16 | lveclmod 21128 | . . . . . . 7 ⊢ (𝐹 ∈ LVec → 𝐹 ∈ LMod) | |
17 | 16 | adantr 480 | . . . . . 6 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 𝐹 ∈ LMod) |
18 | 8 | snssd 4834 | . . . . . 6 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → {(1r‘𝐹)} ⊆ (Base‘𝐹)) |
19 | eqid 2740 | . . . . . . 7 ⊢ (LSubSp‘𝐹) = (LSubSp‘𝐹) | |
20 | 5, 19, 12 | lspcl 20997 | . . . . . 6 ⊢ ((𝐹 ∈ LMod ∧ {(1r‘𝐹)} ⊆ (Base‘𝐹)) → ((LSpan‘𝐹)‘{(1r‘𝐹)}) ∈ (LSubSp‘𝐹)) |
21 | 17, 18, 20 | syl2anc 583 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → ((LSpan‘𝐹)‘{(1r‘𝐹)}) ∈ (LSubSp‘𝐹)) |
22 | 13 | lssdimle 33620 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ ((LSpan‘𝐹)‘{(1r‘𝐹)}) ∈ (LSubSp‘𝐹)) → (dim‘(𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)}))) ≤ (dim‘𝐹)) |
23 | 2, 21, 22 | syl2anc 583 | . . . 4 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (dim‘(𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)}))) ≤ (dim‘𝐹)) |
24 | 15, 23 | eqbrtrrd 5190 | . . 3 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 1 ≤ (dim‘𝐹)) |
25 | 1nn0 12569 | . . . 4 ⊢ 1 ∈ ℕ0 | |
26 | dimcl 33615 | . . . . 5 ⊢ (𝐹 ∈ LVec → (dim‘𝐹) ∈ ℕ0*) | |
27 | 26 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (dim‘𝐹) ∈ ℕ0*) |
28 | xnn0lem1lt 13306 | . . . 4 ⊢ ((1 ∈ ℕ0 ∧ (dim‘𝐹) ∈ ℕ0*) → (1 ≤ (dim‘𝐹) ↔ (1 − 1) < (dim‘𝐹))) | |
29 | 25, 27, 28 | sylancr 586 | . . 3 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1 ≤ (dim‘𝐹) ↔ (1 − 1) < (dim‘𝐹))) |
30 | 24, 29 | mpbid 232 | . 2 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1 − 1) < (dim‘𝐹)) |
31 | 1, 30 | eqbrtrrid 5202 | 1 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 0 < (dim‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ⊆ wss 3976 {csn 4648 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 < clt 11324 ≤ cle 11325 − cmin 11520 ℕ0cn0 12553 ℕ0*cxnn0 12625 Basecbs 17258 ↾s cress 17287 0gc0g 17499 1rcur 20208 Ringcrg 20260 DivRingcdr 20751 LModclmod 20880 LSubSpclss 20952 LSpanclspn 20992 LVecclvec 21124 dimcldim 33611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-reg 9661 ax-inf2 9710 ax-ac2 10532 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-rpss 7758 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-oi 9579 df-r1 9833 df-rank 9834 df-dju 9970 df-card 10008 df-acn 10011 df-ac 10185 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-tset 17330 df-ple 17331 df-ocomp 17332 df-0g 17501 df-mre 17644 df-mrc 17645 df-mri 17646 df-acs 17647 df-proset 18365 df-drs 18366 df-poset 18383 df-ipo 18598 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-nzr 20539 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lbs 21097 df-lvec 21125 df-lindf 21849 df-linds 21850 df-dim 33612 |
This theorem is referenced by: extdggt0 33670 |
Copyright terms: Public domain | W3C validator |