| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > drngdimgt0 | Structured version Visualization version GIF version | ||
| Description: The dimension of a vector space that is also a division ring is greater than zero. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| Ref | Expression |
|---|---|
| drngdimgt0 | ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 0 < (dim‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1m1e0 12312 | . 2 ⊢ (1 − 1) = 0 | |
| 2 | simpl 482 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 𝐹 ∈ LVec) | |
| 3 | simpr 484 | . . . . . 6 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 𝐹 ∈ DivRing) | |
| 4 | drngring 20696 | . . . . . 6 ⊢ (𝐹 ∈ DivRing → 𝐹 ∈ Ring) | |
| 5 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 6 | eqid 2735 | . . . . . . 7 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 7 | 5, 6 | ringidcl 20225 | . . . . . 6 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ (Base‘𝐹)) |
| 8 | 3, 4, 7 | 3syl 18 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1r‘𝐹) ∈ (Base‘𝐹)) |
| 9 | eqid 2735 | . . . . . . 7 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
| 10 | 9, 6 | drngunz 20707 | . . . . . 6 ⊢ (𝐹 ∈ DivRing → (1r‘𝐹) ≠ (0g‘𝐹)) |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1r‘𝐹) ≠ (0g‘𝐹)) |
| 12 | eqid 2735 | . . . . . 6 ⊢ (LSpan‘𝐹) = (LSpan‘𝐹) | |
| 13 | eqid 2735 | . . . . . 6 ⊢ (𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)})) = (𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)})) | |
| 14 | 5, 12, 9, 13 | lsatdim 33657 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ (1r‘𝐹) ∈ (Base‘𝐹) ∧ (1r‘𝐹) ≠ (0g‘𝐹)) → (dim‘(𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)}))) = 1) |
| 15 | 2, 8, 11, 14 | syl3anc 1373 | . . . 4 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (dim‘(𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)}))) = 1) |
| 16 | lveclmod 21064 | . . . . . . 7 ⊢ (𝐹 ∈ LVec → 𝐹 ∈ LMod) | |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 𝐹 ∈ LMod) |
| 18 | 8 | snssd 4785 | . . . . . 6 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → {(1r‘𝐹)} ⊆ (Base‘𝐹)) |
| 19 | eqid 2735 | . . . . . . 7 ⊢ (LSubSp‘𝐹) = (LSubSp‘𝐹) | |
| 20 | 5, 19, 12 | lspcl 20933 | . . . . . 6 ⊢ ((𝐹 ∈ LMod ∧ {(1r‘𝐹)} ⊆ (Base‘𝐹)) → ((LSpan‘𝐹)‘{(1r‘𝐹)}) ∈ (LSubSp‘𝐹)) |
| 21 | 17, 18, 20 | syl2anc 584 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → ((LSpan‘𝐹)‘{(1r‘𝐹)}) ∈ (LSubSp‘𝐹)) |
| 22 | 13 | lssdimle 33647 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ ((LSpan‘𝐹)‘{(1r‘𝐹)}) ∈ (LSubSp‘𝐹)) → (dim‘(𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)}))) ≤ (dim‘𝐹)) |
| 23 | 2, 21, 22 | syl2anc 584 | . . . 4 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (dim‘(𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)}))) ≤ (dim‘𝐹)) |
| 24 | 15, 23 | eqbrtrrd 5143 | . . 3 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 1 ≤ (dim‘𝐹)) |
| 25 | 1nn0 12517 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 26 | dimcl 33642 | . . . . 5 ⊢ (𝐹 ∈ LVec → (dim‘𝐹) ∈ ℕ0*) | |
| 27 | 26 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (dim‘𝐹) ∈ ℕ0*) |
| 28 | xnn0lem1lt 13260 | . . . 4 ⊢ ((1 ∈ ℕ0 ∧ (dim‘𝐹) ∈ ℕ0*) → (1 ≤ (dim‘𝐹) ↔ (1 − 1) < (dim‘𝐹))) | |
| 29 | 25, 27, 28 | sylancr 587 | . . 3 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1 ≤ (dim‘𝐹) ↔ (1 − 1) < (dim‘𝐹))) |
| 30 | 24, 29 | mpbid 232 | . 2 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1 − 1) < (dim‘𝐹)) |
| 31 | 1, 30 | eqbrtrrid 5155 | 1 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 0 < (dim‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ⊆ wss 3926 {csn 4601 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 < clt 11269 ≤ cle 11270 − cmin 11466 ℕ0cn0 12501 ℕ0*cxnn0 12574 Basecbs 17228 ↾s cress 17251 0gc0g 17453 1rcur 20141 Ringcrg 20193 DivRingcdr 20689 LModclmod 20817 LSubSpclss 20888 LSpanclspn 20928 LVecclvec 21060 dimcldim 33638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-reg 9606 ax-inf2 9655 ax-ac2 10477 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-rpss 7717 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-oi 9524 df-r1 9778 df-rank 9779 df-dju 9915 df-card 9953 df-acn 9956 df-ac 10130 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-xnn0 12575 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-hash 14349 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-tset 17290 df-ple 17291 df-ocomp 17292 df-0g 17455 df-mre 17598 df-mrc 17599 df-mri 17600 df-acs 17601 df-proset 18306 df-drs 18307 df-poset 18325 df-ipo 18538 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-nzr 20473 df-drng 20691 df-lmod 20819 df-lss 20889 df-lsp 20929 df-lbs 21033 df-lvec 21061 df-lindf 21766 df-linds 21767 df-dim 33639 |
| This theorem is referenced by: extdggt0 33699 |
| Copyright terms: Public domain | W3C validator |