Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drngdimgt0 Structured version   Visualization version   GIF version

Theorem drngdimgt0 31680
Description: The dimension of a vector space that is also a division ring is greater than zero. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
drngdimgt0 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 0 < (dim‘𝐹))

Proof of Theorem drngdimgt0
StepHypRef Expression
1 1m1e0 12028 . 2 (1 − 1) = 0
2 simpl 482 . . . . 5 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 𝐹 ∈ LVec)
3 simpr 484 . . . . . 6 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 𝐹 ∈ DivRing)
4 drngring 19979 . . . . . 6 (𝐹 ∈ DivRing → 𝐹 ∈ Ring)
5 eqid 2739 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
6 eqid 2739 . . . . . . 7 (1r𝐹) = (1r𝐹)
75, 6ringidcl 19788 . . . . . 6 (𝐹 ∈ Ring → (1r𝐹) ∈ (Base‘𝐹))
83, 4, 73syl 18 . . . . 5 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1r𝐹) ∈ (Base‘𝐹))
9 eqid 2739 . . . . . . 7 (0g𝐹) = (0g𝐹)
109, 6drngunz 19987 . . . . . 6 (𝐹 ∈ DivRing → (1r𝐹) ≠ (0g𝐹))
1110adantl 481 . . . . 5 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1r𝐹) ≠ (0g𝐹))
12 eqid 2739 . . . . . 6 (LSpan‘𝐹) = (LSpan‘𝐹)
13 eqid 2739 . . . . . 6 (𝐹s ((LSpan‘𝐹)‘{(1r𝐹)})) = (𝐹s ((LSpan‘𝐹)‘{(1r𝐹)}))
145, 12, 9, 13lsatdim 31679 . . . . 5 ((𝐹 ∈ LVec ∧ (1r𝐹) ∈ (Base‘𝐹) ∧ (1r𝐹) ≠ (0g𝐹)) → (dim‘(𝐹s ((LSpan‘𝐹)‘{(1r𝐹)}))) = 1)
152, 8, 11, 14syl3anc 1369 . . . 4 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (dim‘(𝐹s ((LSpan‘𝐹)‘{(1r𝐹)}))) = 1)
16 lveclmod 20349 . . . . . . 7 (𝐹 ∈ LVec → 𝐹 ∈ LMod)
1716adantr 480 . . . . . 6 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 𝐹 ∈ LMod)
188snssd 4747 . . . . . 6 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → {(1r𝐹)} ⊆ (Base‘𝐹))
19 eqid 2739 . . . . . . 7 (LSubSp‘𝐹) = (LSubSp‘𝐹)
205, 19, 12lspcl 20219 . . . . . 6 ((𝐹 ∈ LMod ∧ {(1r𝐹)} ⊆ (Base‘𝐹)) → ((LSpan‘𝐹)‘{(1r𝐹)}) ∈ (LSubSp‘𝐹))
2117, 18, 20syl2anc 583 . . . . 5 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → ((LSpan‘𝐹)‘{(1r𝐹)}) ∈ (LSubSp‘𝐹))
2213lssdimle 31670 . . . . 5 ((𝐹 ∈ LVec ∧ ((LSpan‘𝐹)‘{(1r𝐹)}) ∈ (LSubSp‘𝐹)) → (dim‘(𝐹s ((LSpan‘𝐹)‘{(1r𝐹)}))) ≤ (dim‘𝐹))
232, 21, 22syl2anc 583 . . . 4 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (dim‘(𝐹s ((LSpan‘𝐹)‘{(1r𝐹)}))) ≤ (dim‘𝐹))
2415, 23eqbrtrrd 5102 . . 3 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 1 ≤ (dim‘𝐹))
25 1nn0 12232 . . . 4 1 ∈ ℕ0
26 dimcl 31667 . . . . 5 (𝐹 ∈ LVec → (dim‘𝐹) ∈ ℕ0*)
2726adantr 480 . . . 4 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (dim‘𝐹) ∈ ℕ0*)
28 xnn0lem1lt 12960 . . . 4 ((1 ∈ ℕ0 ∧ (dim‘𝐹) ∈ ℕ0*) → (1 ≤ (dim‘𝐹) ↔ (1 − 1) < (dim‘𝐹)))
2925, 27, 28sylancr 586 . . 3 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1 ≤ (dim‘𝐹) ↔ (1 − 1) < (dim‘𝐹)))
3024, 29mpbid 231 . 2 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1 − 1) < (dim‘𝐹))
311, 30eqbrtrrid 5114 1 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 0 < (dim‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wne 2944  wss 3891  {csn 4566   class class class wbr 5078  cfv 6430  (class class class)co 7268  0cc0 10855  1c1 10856   < clt 10993  cle 10994  cmin 11188  0cn0 12216  0*cxnn0 12288  Basecbs 16893  s cress 16922  0gc0g 17131  1rcur 19718  Ringcrg 19764  DivRingcdr 19972  LModclmod 20104  LSubSpclss 20174  LSpanclspn 20214  LVecclvec 20345  dimcldim 31663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-reg 9312  ax-inf2 9360  ax-ac2 10203  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-rpss 7567  df-om 7701  df-1st 7817  df-2nd 7818  df-tpos 8026  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-oadd 8285  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-oi 9230  df-r1 9506  df-rank 9507  df-dju 9643  df-card 9681  df-acn 9684  df-ac 9856  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-xnn0 12289  df-z 12303  df-dec 12420  df-uz 12565  df-fz 13222  df-hash 14026  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-sca 16959  df-vsca 16960  df-tset 16962  df-ple 16963  df-ocomp 16964  df-0g 17133  df-mre 17276  df-mrc 17277  df-mri 17278  df-acs 17279  df-proset 17994  df-drs 17995  df-poset 18012  df-ipo 18227  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-submnd 18412  df-grp 18561  df-minusg 18562  df-sbg 18563  df-subg 18733  df-cmn 19369  df-abl 19370  df-mgp 19702  df-ur 19719  df-ring 19766  df-oppr 19843  df-dvdsr 19864  df-unit 19865  df-invr 19895  df-drng 19974  df-lmod 20106  df-lss 20175  df-lsp 20215  df-lbs 20318  df-lvec 20346  df-nzr 20510  df-lindf 20994  df-linds 20995  df-dim 31664
This theorem is referenced by:  extdggt0  31711
  Copyright terms: Public domain W3C validator