| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > drngdimgt0 | Structured version Visualization version GIF version | ||
| Description: The dimension of a vector space that is also a division ring is greater than zero. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| Ref | Expression |
|---|---|
| drngdimgt0 | ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 0 < (dim‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1m1e0 12197 | . 2 ⊢ (1 − 1) = 0 | |
| 2 | simpl 482 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 𝐹 ∈ LVec) | |
| 3 | simpr 484 | . . . . . 6 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 𝐹 ∈ DivRing) | |
| 4 | drngring 20651 | . . . . . 6 ⊢ (𝐹 ∈ DivRing → 𝐹 ∈ Ring) | |
| 5 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 6 | eqid 2731 | . . . . . . 7 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 7 | 5, 6 | ringidcl 20183 | . . . . . 6 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ (Base‘𝐹)) |
| 8 | 3, 4, 7 | 3syl 18 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1r‘𝐹) ∈ (Base‘𝐹)) |
| 9 | eqid 2731 | . . . . . . 7 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
| 10 | 9, 6 | drngunz 20662 | . . . . . 6 ⊢ (𝐹 ∈ DivRing → (1r‘𝐹) ≠ (0g‘𝐹)) |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1r‘𝐹) ≠ (0g‘𝐹)) |
| 12 | eqid 2731 | . . . . . 6 ⊢ (LSpan‘𝐹) = (LSpan‘𝐹) | |
| 13 | eqid 2731 | . . . . . 6 ⊢ (𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)})) = (𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)})) | |
| 14 | 5, 12, 9, 13 | lsatdim 33630 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ (1r‘𝐹) ∈ (Base‘𝐹) ∧ (1r‘𝐹) ≠ (0g‘𝐹)) → (dim‘(𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)}))) = 1) |
| 15 | 2, 8, 11, 14 | syl3anc 1373 | . . . 4 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (dim‘(𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)}))) = 1) |
| 16 | lveclmod 21040 | . . . . . . 7 ⊢ (𝐹 ∈ LVec → 𝐹 ∈ LMod) | |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 𝐹 ∈ LMod) |
| 18 | 8 | snssd 4758 | . . . . . 6 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → {(1r‘𝐹)} ⊆ (Base‘𝐹)) |
| 19 | eqid 2731 | . . . . . . 7 ⊢ (LSubSp‘𝐹) = (LSubSp‘𝐹) | |
| 20 | 5, 19, 12 | lspcl 20909 | . . . . . 6 ⊢ ((𝐹 ∈ LMod ∧ {(1r‘𝐹)} ⊆ (Base‘𝐹)) → ((LSpan‘𝐹)‘{(1r‘𝐹)}) ∈ (LSubSp‘𝐹)) |
| 21 | 17, 18, 20 | syl2anc 584 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → ((LSpan‘𝐹)‘{(1r‘𝐹)}) ∈ (LSubSp‘𝐹)) |
| 22 | 13 | lssdimle 33620 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ ((LSpan‘𝐹)‘{(1r‘𝐹)}) ∈ (LSubSp‘𝐹)) → (dim‘(𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)}))) ≤ (dim‘𝐹)) |
| 23 | 2, 21, 22 | syl2anc 584 | . . . 4 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (dim‘(𝐹 ↾s ((LSpan‘𝐹)‘{(1r‘𝐹)}))) ≤ (dim‘𝐹)) |
| 24 | 15, 23 | eqbrtrrd 5113 | . . 3 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 1 ≤ (dim‘𝐹)) |
| 25 | 1nn0 12397 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 26 | dimcl 33615 | . . . . 5 ⊢ (𝐹 ∈ LVec → (dim‘𝐹) ∈ ℕ0*) | |
| 27 | 26 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (dim‘𝐹) ∈ ℕ0*) |
| 28 | xnn0lem1lt 13143 | . . . 4 ⊢ ((1 ∈ ℕ0 ∧ (dim‘𝐹) ∈ ℕ0*) → (1 ≤ (dim‘𝐹) ↔ (1 − 1) < (dim‘𝐹))) | |
| 29 | 25, 27, 28 | sylancr 587 | . . 3 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1 ≤ (dim‘𝐹) ↔ (1 − 1) < (dim‘𝐹))) |
| 30 | 24, 29 | mpbid 232 | . 2 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1 − 1) < (dim‘𝐹)) |
| 31 | 1, 30 | eqbrtrrid 5125 | 1 ⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 0 < (dim‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3897 {csn 4573 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 < clt 11146 ≤ cle 11147 − cmin 11344 ℕ0cn0 12381 ℕ0*cxnn0 12454 Basecbs 17120 ↾s cress 17141 0gc0g 17343 1rcur 20099 Ringcrg 20151 DivRingcdr 20644 LModclmod 20793 LSubSpclss 20864 LSpanclspn 20904 LVecclvec 21036 dimcldim 33611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-reg 9478 ax-inf2 9531 ax-ac2 10354 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-rpss 7656 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-oi 9396 df-r1 9657 df-rank 9658 df-dju 9794 df-card 9832 df-acn 9835 df-ac 10007 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-tset 17180 df-ple 17181 df-ocomp 17182 df-0g 17345 df-mre 17488 df-mrc 17489 df-mri 17490 df-acs 17491 df-proset 18200 df-drs 18201 df-poset 18219 df-ipo 18434 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-nzr 20428 df-drng 20646 df-lmod 20795 df-lss 20865 df-lsp 20905 df-lbs 21009 df-lvec 21037 df-lindf 21743 df-linds 21744 df-dim 33612 |
| This theorem is referenced by: extdggt0 33670 |
| Copyright terms: Public domain | W3C validator |