Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drngdimgt0 Structured version   Visualization version   GIF version

Theorem drngdimgt0 31104
Description: The dimension of a vector space that is also a division ring is greater than zero. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
drngdimgt0 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 0 < (dim‘𝐹))

Proof of Theorem drngdimgt0
StepHypRef Expression
1 1m1e0 11697 . 2 (1 − 1) = 0
2 simpl 486 . . . . 5 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 𝐹 ∈ LVec)
3 simpr 488 . . . . . 6 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 𝐹 ∈ DivRing)
4 drngring 19502 . . . . . 6 (𝐹 ∈ DivRing → 𝐹 ∈ Ring)
5 eqid 2798 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
6 eqid 2798 . . . . . . 7 (1r𝐹) = (1r𝐹)
75, 6ringidcl 19314 . . . . . 6 (𝐹 ∈ Ring → (1r𝐹) ∈ (Base‘𝐹))
83, 4, 73syl 18 . . . . 5 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1r𝐹) ∈ (Base‘𝐹))
9 eqid 2798 . . . . . . 7 (0g𝐹) = (0g𝐹)
109, 6drngunz 19510 . . . . . 6 (𝐹 ∈ DivRing → (1r𝐹) ≠ (0g𝐹))
1110adantl 485 . . . . 5 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1r𝐹) ≠ (0g𝐹))
12 eqid 2798 . . . . . 6 (LSpan‘𝐹) = (LSpan‘𝐹)
13 eqid 2798 . . . . . 6 (𝐹s ((LSpan‘𝐹)‘{(1r𝐹)})) = (𝐹s ((LSpan‘𝐹)‘{(1r𝐹)}))
145, 12, 9, 13lsatdim 31103 . . . . 5 ((𝐹 ∈ LVec ∧ (1r𝐹) ∈ (Base‘𝐹) ∧ (1r𝐹) ≠ (0g𝐹)) → (dim‘(𝐹s ((LSpan‘𝐹)‘{(1r𝐹)}))) = 1)
152, 8, 11, 14syl3anc 1368 . . . 4 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (dim‘(𝐹s ((LSpan‘𝐹)‘{(1r𝐹)}))) = 1)
16 lveclmod 19871 . . . . . . 7 (𝐹 ∈ LVec → 𝐹 ∈ LMod)
1716adantr 484 . . . . . 6 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 𝐹 ∈ LMod)
188snssd 4702 . . . . . 6 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → {(1r𝐹)} ⊆ (Base‘𝐹))
19 eqid 2798 . . . . . . 7 (LSubSp‘𝐹) = (LSubSp‘𝐹)
205, 19, 12lspcl 19741 . . . . . 6 ((𝐹 ∈ LMod ∧ {(1r𝐹)} ⊆ (Base‘𝐹)) → ((LSpan‘𝐹)‘{(1r𝐹)}) ∈ (LSubSp‘𝐹))
2117, 18, 20syl2anc 587 . . . . 5 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → ((LSpan‘𝐹)‘{(1r𝐹)}) ∈ (LSubSp‘𝐹))
2213lssdimle 31094 . . . . 5 ((𝐹 ∈ LVec ∧ ((LSpan‘𝐹)‘{(1r𝐹)}) ∈ (LSubSp‘𝐹)) → (dim‘(𝐹s ((LSpan‘𝐹)‘{(1r𝐹)}))) ≤ (dim‘𝐹))
232, 21, 22syl2anc 587 . . . 4 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (dim‘(𝐹s ((LSpan‘𝐹)‘{(1r𝐹)}))) ≤ (dim‘𝐹))
2415, 23eqbrtrrd 5054 . . 3 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 1 ≤ (dim‘𝐹))
25 1nn0 11901 . . . 4 1 ∈ ℕ0
26 dimcl 31091 . . . . 5 (𝐹 ∈ LVec → (dim‘𝐹) ∈ ℕ0*)
2726adantr 484 . . . 4 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (dim‘𝐹) ∈ ℕ0*)
28 xnn0lem1lt 12625 . . . 4 ((1 ∈ ℕ0 ∧ (dim‘𝐹) ∈ ℕ0*) → (1 ≤ (dim‘𝐹) ↔ (1 − 1) < (dim‘𝐹)))
2925, 27, 28sylancr 590 . . 3 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1 ≤ (dim‘𝐹) ↔ (1 − 1) < (dim‘𝐹)))
3024, 29mpbid 235 . 2 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → (1 − 1) < (dim‘𝐹))
311, 30eqbrtrrid 5066 1 ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 0 < (dim‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wss 3881  {csn 4525   class class class wbr 5030  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527   < clt 10664  cle 10665  cmin 10859  0cn0 11885  0*cxnn0 11955  Basecbs 16475  s cress 16476  0gc0g 16705  1rcur 19244  Ringcrg 19290  DivRingcdr 19495  LModclmod 19627  LSubSpclss 19696  LSpanclspn 19736  LVecclvec 19867  dimcldim 31087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-reg 9040  ax-inf2 9088  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-rpss 7429  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-oi 8958  df-r1 9177  df-rank 9178  df-dju 9314  df-card 9352  df-acn 9355  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-ple 16577  df-ocomp 16578  df-0g 16707  df-mre 16849  df-mrc 16850  df-mri 16851  df-acs 16852  df-proset 17530  df-drs 17531  df-poset 17548  df-ipo 17754  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lbs 19840  df-lvec 19868  df-nzr 20024  df-lindf 20495  df-linds 20496  df-dim 31088
This theorem is referenced by:  extdggt0  31135
  Copyright terms: Public domain W3C validator