![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > drngdimgt0 | Structured version Visualization version GIF version |
Description: The dimension of a vector space that is also a division ring is greater than zero. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
Ref | Expression |
---|---|
drngdimgt0 | β’ ((πΉ β LVec β§ πΉ β DivRing) β 0 < (dimβπΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1m1e0 12312 | . 2 β’ (1 β 1) = 0 | |
2 | simpl 481 | . . . . 5 β’ ((πΉ β LVec β§ πΉ β DivRing) β πΉ β LVec) | |
3 | simpr 483 | . . . . . 6 β’ ((πΉ β LVec β§ πΉ β DivRing) β πΉ β DivRing) | |
4 | drngring 20633 | . . . . . 6 β’ (πΉ β DivRing β πΉ β Ring) | |
5 | eqid 2725 | . . . . . . 7 β’ (BaseβπΉ) = (BaseβπΉ) | |
6 | eqid 2725 | . . . . . . 7 β’ (1rβπΉ) = (1rβπΉ) | |
7 | 5, 6 | ringidcl 20204 | . . . . . 6 β’ (πΉ β Ring β (1rβπΉ) β (BaseβπΉ)) |
8 | 3, 4, 7 | 3syl 18 | . . . . 5 β’ ((πΉ β LVec β§ πΉ β DivRing) β (1rβπΉ) β (BaseβπΉ)) |
9 | eqid 2725 | . . . . . . 7 β’ (0gβπΉ) = (0gβπΉ) | |
10 | 9, 6 | drngunz 20645 | . . . . . 6 β’ (πΉ β DivRing β (1rβπΉ) β (0gβπΉ)) |
11 | 10 | adantl 480 | . . . . 5 β’ ((πΉ β LVec β§ πΉ β DivRing) β (1rβπΉ) β (0gβπΉ)) |
12 | eqid 2725 | . . . . . 6 β’ (LSpanβπΉ) = (LSpanβπΉ) | |
13 | eqid 2725 | . . . . . 6 β’ (πΉ βΎs ((LSpanβπΉ)β{(1rβπΉ)})) = (πΉ βΎs ((LSpanβπΉ)β{(1rβπΉ)})) | |
14 | 5, 12, 9, 13 | lsatdim 33371 | . . . . 5 β’ ((πΉ β LVec β§ (1rβπΉ) β (BaseβπΉ) β§ (1rβπΉ) β (0gβπΉ)) β (dimβ(πΉ βΎs ((LSpanβπΉ)β{(1rβπΉ)}))) = 1) |
15 | 2, 8, 11, 14 | syl3anc 1368 | . . . 4 β’ ((πΉ β LVec β§ πΉ β DivRing) β (dimβ(πΉ βΎs ((LSpanβπΉ)β{(1rβπΉ)}))) = 1) |
16 | lveclmod 20993 | . . . . . . 7 β’ (πΉ β LVec β πΉ β LMod) | |
17 | 16 | adantr 479 | . . . . . 6 β’ ((πΉ β LVec β§ πΉ β DivRing) β πΉ β LMod) |
18 | 8 | snssd 4808 | . . . . . 6 β’ ((πΉ β LVec β§ πΉ β DivRing) β {(1rβπΉ)} β (BaseβπΉ)) |
19 | eqid 2725 | . . . . . . 7 β’ (LSubSpβπΉ) = (LSubSpβπΉ) | |
20 | 5, 19, 12 | lspcl 20862 | . . . . . 6 β’ ((πΉ β LMod β§ {(1rβπΉ)} β (BaseβπΉ)) β ((LSpanβπΉ)β{(1rβπΉ)}) β (LSubSpβπΉ)) |
21 | 17, 18, 20 | syl2anc 582 | . . . . 5 β’ ((πΉ β LVec β§ πΉ β DivRing) β ((LSpanβπΉ)β{(1rβπΉ)}) β (LSubSpβπΉ)) |
22 | 13 | lssdimle 33361 | . . . . 5 β’ ((πΉ β LVec β§ ((LSpanβπΉ)β{(1rβπΉ)}) β (LSubSpβπΉ)) β (dimβ(πΉ βΎs ((LSpanβπΉ)β{(1rβπΉ)}))) β€ (dimβπΉ)) |
23 | 2, 21, 22 | syl2anc 582 | . . . 4 β’ ((πΉ β LVec β§ πΉ β DivRing) β (dimβ(πΉ βΎs ((LSpanβπΉ)β{(1rβπΉ)}))) β€ (dimβπΉ)) |
24 | 15, 23 | eqbrtrrd 5167 | . . 3 β’ ((πΉ β LVec β§ πΉ β DivRing) β 1 β€ (dimβπΉ)) |
25 | 1nn0 12516 | . . . 4 β’ 1 β β0 | |
26 | dimcl 33356 | . . . . 5 β’ (πΉ β LVec β (dimβπΉ) β β0*) | |
27 | 26 | adantr 479 | . . . 4 β’ ((πΉ β LVec β§ πΉ β DivRing) β (dimβπΉ) β β0*) |
28 | xnn0lem1lt 13253 | . . . 4 β’ ((1 β β0 β§ (dimβπΉ) β β0*) β (1 β€ (dimβπΉ) β (1 β 1) < (dimβπΉ))) | |
29 | 25, 27, 28 | sylancr 585 | . . 3 β’ ((πΉ β LVec β§ πΉ β DivRing) β (1 β€ (dimβπΉ) β (1 β 1) < (dimβπΉ))) |
30 | 24, 29 | mpbid 231 | . 2 β’ ((πΉ β LVec β§ πΉ β DivRing) β (1 β 1) < (dimβπΉ)) |
31 | 1, 30 | eqbrtrrid 5179 | 1 β’ ((πΉ β LVec β§ πΉ β DivRing) β 0 < (dimβπΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2930 β wss 3940 {csn 4624 class class class wbr 5143 βcfv 6542 (class class class)co 7415 0cc0 11136 1c1 11137 < clt 11276 β€ cle 11277 β cmin 11472 β0cn0 12500 β0*cxnn0 12572 Basecbs 17177 βΎs cress 17206 0gc0g 17418 1rcur 20123 Ringcrg 20175 DivRingcdr 20626 LModclmod 20745 LSubSpclss 20817 LSpanclspn 20857 LVecclvec 20989 dimcldim 33352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-reg 9613 ax-inf2 9662 ax-ac2 10484 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-rpss 7725 df-om 7868 df-1st 7989 df-2nd 7990 df-tpos 8228 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-oadd 8487 df-er 8721 df-map 8843 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-oi 9531 df-r1 9785 df-rank 9786 df-dju 9922 df-card 9960 df-acn 9963 df-ac 10137 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-xnn0 12573 df-z 12587 df-dec 12706 df-uz 12851 df-fz 13515 df-hash 14320 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-sca 17246 df-vsca 17247 df-tset 17249 df-ple 17250 df-ocomp 17251 df-0g 17420 df-mre 17563 df-mrc 17564 df-mri 17565 df-acs 17566 df-proset 18284 df-drs 18285 df-poset 18302 df-ipo 18517 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-submnd 18738 df-grp 18895 df-minusg 18896 df-sbg 18897 df-subg 19080 df-cmn 19739 df-abl 19740 df-mgp 20077 df-rng 20095 df-ur 20124 df-ring 20177 df-oppr 20275 df-dvdsr 20298 df-unit 20299 df-invr 20329 df-nzr 20454 df-drng 20628 df-lmod 20747 df-lss 20818 df-lsp 20858 df-lbs 20962 df-lvec 20990 df-lindf 21742 df-linds 21743 df-dim 33353 |
This theorem is referenced by: extdggt0 33405 |
Copyright terms: Public domain | W3C validator |