| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnmpoi | Structured version Visualization version GIF version | ||
| Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
| Ref | Expression |
|---|---|
| fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| fnmpoi.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| fnmpoi | ⊢ 𝐹 Fn (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmpoi.2 | . . 3 ⊢ 𝐶 ∈ V | |
| 2 | 1 | rgen2w 3056 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V |
| 3 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 4 | 3 | fnmpo 8068 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V → 𝐹 Fn (𝐴 × 𝐵)) |
| 5 | 2, 4 | ax-mp 5 | 1 ⊢ 𝐹 Fn (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 × cxp 5652 Fn wfn 6526 ∈ cmpo 7407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 |
| This theorem is referenced by: dmmpo 8070 fnoa 8520 fnom 8521 fnoe 8522 fnmap 8847 fnpm 8848 addpqnq 10952 mulpqnq 10955 mpoaddf 11223 mpomulf 11224 elq 12966 cnref1o 13001 ccatfn 14590 qnnen 16231 restfn 17438 prdsdsfn 17479 imasdsfn 17528 imasvscafn 17551 homffn 17705 comfffn 17716 comffn 17717 isoval 17778 cofucl 17901 fnfuc 17961 natffn 17965 catcisolem 18123 estrchomfn 18147 funcestrcsetclem4 18155 funcsetcestrclem4 18170 fnxpc 18188 1stfcl 18209 2ndfcl 18210 prfcl 18215 evlfcl 18234 curf1cl 18240 curfcl 18244 hofcl 18271 yonedalem3 18292 yonedainv 18293 plusffn 18627 mulgfval 19052 mulgfvalALT 19053 mulgfn 19055 gimfn 19244 sylow2blem2 19602 rnghmfn 20399 rhmfn 20459 rnghmsscmap2 20589 rnghmsscmap 20590 rhmsscmap2 20618 rhmsscmap 20619 srhmsubc 20640 rhmsubclem1 20645 fldc 20744 fldhmsubc 20745 scaffn 20840 lmimfn 20984 ipffn 21611 mplsubrglem 21964 tx1stc 23588 tx2ndc 23589 hmeofn 23695 efmndtmd 24039 qustgplem 24059 nmoffn 24650 rrxmfval 25358 mbfimaopnlem 25608 i1fadd 25648 i1fmul 25649 subsfn 27982 ex-fpar 30443 smatrcl 33827 txomap 33865 qtophaus 33867 pstmxmet 33928 dya2icoseg 34309 dya2iocrfn 34311 fncvm 35279 mpomulnzcnf 36317 cntotbnd 37820 grimfn 47892 grlimfn 47991 rngchomffvalALTV 48253 rngchomrnghmresALTV 48254 rhmsubcALTVlem1 48256 funcringcsetcALTV2lem4 48268 funcringcsetclem4ALTV 48291 srhmsubcALTV 48300 fldcALTV 48307 fldhmsubcALTV 48308 rrx2xpref1o 48698 sectfn 48999 discsubclem 49030 swapf2fn 49185 fucofn2 49235 functhinclem1 49330 lanfn 49486 ranfn 49487 |
| Copyright terms: Public domain | W3C validator |