Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnmpoi | Structured version Visualization version GIF version |
Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
fnmpoi.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
fnmpoi | ⊢ 𝐹 Fn (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmpoi.2 | . . 3 ⊢ 𝐶 ∈ V | |
2 | 1 | rgen2w 3078 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V |
3 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
4 | 3 | fnmpo 7895 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V → 𝐹 Fn (𝐴 × 𝐵)) |
5 | 2, 4 | ax-mp 5 | 1 ⊢ 𝐹 Fn (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 ∀wral 3065 Vcvv 3430 × cxp 5586 Fn wfn 6425 ∈ cmpo 7270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 |
This theorem is referenced by: dmmpo 7897 fnoa 8314 fnom 8315 fnoe 8316 fnmap 8596 fnpm 8597 addpqnq 10678 mulpqnq 10681 elq 12672 cnref1o 12707 ccatfn 14256 qnnen 15903 restfn 17116 prdsdsfn 17157 imasdsfn 17206 imasvscafn 17229 homffn 17383 comfffn 17394 comffn 17395 isoval 17458 cofucl 17584 fnfuc 17642 natffn 17646 catcisolem 17806 estrchomfn 17832 funcestrcsetclem4 17841 funcsetcestrclem4 17856 fnxpc 17874 1stfcl 17895 2ndfcl 17896 prfcl 17901 evlfcl 17921 curf1cl 17927 curfcl 17931 hofcl 17958 yonedalem3 17979 yonedainv 17980 plusffn 18316 mulgfval 18683 mulgfvalALT 18684 mulgfn 18686 gimfn 18858 sylow2blem2 19207 scaffn 20125 lmimfn 20269 ipffn 20837 mplsubrglem 21191 tx1stc 22782 tx2ndc 22783 hmeofn 22889 efmndtmd 23233 qustgplem 23253 nmoffn 23856 rrxmfval 24551 mbfimaopnlem 24800 i1fadd 24840 i1fmul 24841 ex-fpar 28805 smatrcl 31725 txomap 31763 qtophaus 31765 pstmxmet 31826 dya2icoseg 32223 dya2iocrfn 32225 fncvm 33198 cntotbnd 35933 rnghmfn 45400 rhmfn 45428 rnghmsscmap2 45483 rnghmsscmap 45484 rngchomffvalALTV 45505 rngchomrnghmresALTV 45506 rhmsscmap2 45529 rhmsscmap 45530 funcringcsetcALTV2lem4 45549 funcringcsetclem4ALTV 45572 srhmsubc 45586 fldc 45593 fldhmsubc 45594 rhmsubclem1 45596 srhmsubcALTV 45604 fldcALTV 45611 fldhmsubcALTV 45612 rhmsubcALTVlem1 45614 rrx2xpref1o 46016 functhinclem1 46274 |
Copyright terms: Public domain | W3C validator |