![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnmpoi | Structured version Visualization version GIF version |
Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
fnmpoi.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
fnmpoi | ⊢ 𝐹 Fn (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmpoi.2 | . . 3 ⊢ 𝐶 ∈ V | |
2 | 1 | rgen2w 3056 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V |
3 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
4 | 3 | fnmpo 8085 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V → 𝐹 Fn (𝐴 × 𝐵)) |
5 | 2, 4 | ax-mp 5 | 1 ⊢ 𝐹 Fn (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ∀wral 3051 Vcvv 3462 × cxp 5682 Fn wfn 6551 ∈ cmpo 7428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5306 ax-nul 5313 ax-pr 5435 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-id 5582 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-fv 6564 df-oprab 7430 df-mpo 7431 df-1st 8005 df-2nd 8006 |
This theorem is referenced by: dmmpo 8087 fnoa 8540 fnom 8541 fnoe 8542 fnmap 8864 fnpm 8865 addpqnq 10983 mulpqnq 10986 mpoaddf 11254 mpomulf 11255 elq 12988 cnref1o 13023 ccatfn 14582 qnnen 16217 restfn 17441 prdsdsfn 17482 imasdsfn 17531 imasvscafn 17554 homffn 17708 comfffn 17719 comffn 17720 isoval 17783 cofucl 17909 fnfuc 17970 natffn 17974 catcisolem 18134 estrchomfn 18160 funcestrcsetclem4 18169 funcsetcestrclem4 18184 fnxpc 18202 1stfcl 18223 2ndfcl 18224 prfcl 18229 evlfcl 18249 curf1cl 18255 curfcl 18259 hofcl 18286 yonedalem3 18307 yonedainv 18308 plusffn 18644 mulgfval 19065 mulgfvalALT 19066 mulgfn 19068 gimfn 19257 sylow2blem2 19621 rnghmfn 20423 rhmfn 20483 rnghmsscmap2 20609 rnghmsscmap 20610 rhmsscmap2 20638 rhmsscmap 20639 srhmsubc 20660 rhmsubclem1 20665 fldc 20765 fldhmsubc 20766 scaffn 20861 lmimfn 21006 ipffn 21649 mplsubrglem 22015 tx1stc 23648 tx2ndc 23649 hmeofn 23755 efmndtmd 24099 qustgplem 24119 nmoffn 24722 rrxmfval 25428 mbfimaopnlem 25678 i1fadd 25718 i1fmul 25719 subsfn 28037 ex-fpar 30398 smatrcl 33613 txomap 33651 qtophaus 33653 pstmxmet 33714 dya2icoseg 34113 dya2iocrfn 34115 fncvm 35087 mpomulnzcnf 36013 cntotbnd 37499 grimfn 47462 grlimfn 47503 rngchomffvalALTV 47673 rngchomrnghmresALTV 47674 rhmsubcALTVlem1 47676 funcringcsetcALTV2lem4 47688 funcringcsetclem4ALTV 47711 srhmsubcALTV 47720 fldcALTV 47727 fldhmsubcALTV 47728 rrx2xpref1o 48124 functhinclem1 48380 |
Copyright terms: Public domain | W3C validator |