| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnmpoi | Structured version Visualization version GIF version | ||
| Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
| Ref | Expression |
|---|---|
| fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| fnmpoi.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| fnmpoi | ⊢ 𝐹 Fn (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmpoi.2 | . . 3 ⊢ 𝐶 ∈ V | |
| 2 | 1 | rgen2w 3049 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V |
| 3 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 4 | 3 | fnmpo 8011 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V → 𝐹 Fn (𝐴 × 𝐵)) |
| 5 | 2, 4 | ax-mp 5 | 1 ⊢ 𝐹 Fn (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 × cxp 5621 Fn wfn 6481 ∈ cmpo 7355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 |
| This theorem is referenced by: dmmpo 8013 fnoa 8433 fnom 8434 fnoe 8435 fnmap 8767 fnpm 8768 addpqnq 10851 mulpqnq 10854 mpoaddf 11122 mpomulf 11123 elq 12869 cnref1o 12904 ccatfn 14497 qnnen 16140 restfn 17346 prdsdsfn 17387 imasdsfn 17436 imasvscafn 17459 homffn 17617 comfffn 17628 comffn 17629 isoval 17690 cofucl 17813 fnfuc 17873 natffn 17877 catcisolem 18035 estrchomfn 18059 funcestrcsetclem4 18067 funcsetcestrclem4 18082 fnxpc 18100 1stfcl 18121 2ndfcl 18122 prfcl 18127 evlfcl 18146 curf1cl 18152 curfcl 18156 hofcl 18183 yonedalem3 18204 yonedainv 18205 plusffn 18541 mulgfval 18966 mulgfvalALT 18967 mulgfn 18969 gimfn 19158 sylow2blem2 19518 rnghmfn 20342 rhmfn 20402 rnghmsscmap2 20532 rnghmsscmap 20533 rhmsscmap2 20561 rhmsscmap 20562 srhmsubc 20583 rhmsubclem1 20588 fldc 20687 fldhmsubc 20688 scaffn 20804 lmimfn 20948 ipffn 21576 mplsubrglem 21929 tx1stc 23553 tx2ndc 23554 hmeofn 23660 efmndtmd 24004 qustgplem 24024 nmoffn 24615 rrxmfval 25322 mbfimaopnlem 25572 i1fadd 25612 i1fmul 25613 subsfn 27953 ex-fpar 30424 smatrcl 33762 txomap 33800 qtophaus 33802 pstmxmet 33863 dya2icoseg 34244 dya2iocrfn 34246 fncvm 35229 mpomulnzcnf 36272 cntotbnd 37775 grimfn 47864 grlimfn 47964 rngchomffvalALTV 48263 rngchomrnghmresALTV 48264 rhmsubcALTVlem1 48266 funcringcsetcALTV2lem4 48278 funcringcsetclem4ALTV 48301 srhmsubcALTV 48310 fldcALTV 48317 fldhmsubcALTV 48318 rrx2xpref1o 48704 sectfn 49015 discsubclem 49049 oppffn 49110 swapf2fn 49254 fucofn2 49310 fucoppc 49396 functhinclem1 49430 lanfn 49595 ranfn 49596 |
| Copyright terms: Public domain | W3C validator |