| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnmpoi | Structured version Visualization version GIF version | ||
| Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
| Ref | Expression |
|---|---|
| fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| fnmpoi.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| fnmpoi | ⊢ 𝐹 Fn (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmpoi.2 | . . 3 ⊢ 𝐶 ∈ V | |
| 2 | 1 | rgen2w 3050 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V |
| 3 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 4 | 3 | fnmpo 8051 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V → 𝐹 Fn (𝐴 × 𝐵)) |
| 5 | 2, 4 | ax-mp 5 | 1 ⊢ 𝐹 Fn (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 × cxp 5639 Fn wfn 6509 ∈ cmpo 7392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 |
| This theorem is referenced by: dmmpo 8053 fnoa 8475 fnom 8476 fnoe 8477 fnmap 8809 fnpm 8810 addpqnq 10898 mulpqnq 10901 mpoaddf 11169 mpomulf 11170 elq 12916 cnref1o 12951 ccatfn 14544 qnnen 16188 restfn 17394 prdsdsfn 17435 imasdsfn 17484 imasvscafn 17507 homffn 17661 comfffn 17672 comffn 17673 isoval 17734 cofucl 17857 fnfuc 17917 natffn 17921 catcisolem 18079 estrchomfn 18103 funcestrcsetclem4 18111 funcsetcestrclem4 18126 fnxpc 18144 1stfcl 18165 2ndfcl 18166 prfcl 18171 evlfcl 18190 curf1cl 18196 curfcl 18200 hofcl 18227 yonedalem3 18248 yonedainv 18249 plusffn 18583 mulgfval 19008 mulgfvalALT 19009 mulgfn 19011 gimfn 19200 sylow2blem2 19558 rnghmfn 20355 rhmfn 20415 rnghmsscmap2 20545 rnghmsscmap 20546 rhmsscmap2 20574 rhmsscmap 20575 srhmsubc 20596 rhmsubclem1 20601 fldc 20700 fldhmsubc 20701 scaffn 20796 lmimfn 20940 ipffn 21567 mplsubrglem 21920 tx1stc 23544 tx2ndc 23545 hmeofn 23651 efmndtmd 23995 qustgplem 24015 nmoffn 24606 rrxmfval 25313 mbfimaopnlem 25563 i1fadd 25603 i1fmul 25604 subsfn 27937 ex-fpar 30398 smatrcl 33793 txomap 33831 qtophaus 33833 pstmxmet 33894 dya2icoseg 34275 dya2iocrfn 34277 fncvm 35251 mpomulnzcnf 36294 cntotbnd 37797 grimfn 47883 grlimfn 47982 rngchomffvalALTV 48270 rngchomrnghmresALTV 48271 rhmsubcALTVlem1 48273 funcringcsetcALTV2lem4 48285 funcringcsetclem4ALTV 48308 srhmsubcALTV 48317 fldcALTV 48324 fldhmsubcALTV 48325 rrx2xpref1o 48711 sectfn 49022 discsubclem 49056 oppffn 49117 swapf2fn 49261 fucofn2 49317 fucoppc 49403 functhinclem1 49437 lanfn 49602 ranfn 49603 |
| Copyright terms: Public domain | W3C validator |