| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnmpoi | Structured version Visualization version GIF version | ||
| Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
| Ref | Expression |
|---|---|
| fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| fnmpoi.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| fnmpoi | ⊢ 𝐹 Fn (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmpoi.2 | . . 3 ⊢ 𝐶 ∈ V | |
| 2 | 1 | rgen2w 3052 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V |
| 3 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 4 | 3 | fnmpo 8001 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V → 𝐹 Fn (𝐴 × 𝐵)) |
| 5 | 2, 4 | ax-mp 5 | 1 ⊢ 𝐹 Fn (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 × cxp 5614 Fn wfn 6476 ∈ cmpo 7348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 |
| This theorem is referenced by: dmmpo 8003 fnoa 8423 fnom 8424 fnoe 8425 fnmap 8757 fnpm 8758 addpqnq 10829 mulpqnq 10832 mpoaddf 11100 mpomulf 11101 elq 12848 cnref1o 12883 ccatfn 14479 qnnen 16122 restfn 17328 prdsdsfn 17369 imasdsfn 17418 imasvscafn 17441 homffn 17599 comfffn 17610 comffn 17611 isoval 17672 cofucl 17795 fnfuc 17855 natffn 17859 catcisolem 18017 estrchomfn 18041 funcestrcsetclem4 18049 funcsetcestrclem4 18064 fnxpc 18082 1stfcl 18103 2ndfcl 18104 prfcl 18109 evlfcl 18128 curf1cl 18134 curfcl 18138 hofcl 18165 yonedalem3 18186 yonedainv 18187 plusffn 18557 mulgfval 18982 mulgfvalALT 18983 mulgfn 18985 gimfn 19174 sylow2blem2 19534 rnghmfn 20358 rhmfn 20415 rnghmsscmap2 20545 rnghmsscmap 20546 rhmsscmap2 20574 rhmsscmap 20575 srhmsubc 20596 rhmsubclem1 20601 fldc 20700 fldhmsubc 20701 scaffn 20817 lmimfn 20961 ipffn 21589 mplsubrglem 21942 tx1stc 23566 tx2ndc 23567 hmeofn 23673 efmndtmd 24017 qustgplem 24037 nmoffn 24627 rrxmfval 25334 mbfimaopnlem 25584 i1fadd 25624 i1fmul 25625 subsfn 27967 ex-fpar 30440 smatrcl 33807 txomap 33845 qtophaus 33847 pstmxmet 33908 dya2icoseg 34288 dya2iocrfn 34290 fncvm 35299 mpomulnzcnf 36339 cntotbnd 37842 grimfn 47916 grlimfn 48016 rngchomffvalALTV 48315 rngchomrnghmresALTV 48316 rhmsubcALTVlem1 48318 funcringcsetcALTV2lem4 48330 funcringcsetclem4ALTV 48353 srhmsubcALTV 48362 fldcALTV 48369 fldhmsubcALTV 48370 rrx2xpref1o 48756 sectfn 49067 discsubclem 49101 oppffn 49162 swapf2fn 49306 fucofn2 49362 fucoppc 49448 functhinclem1 49482 lanfn 49647 ranfn 49648 |
| Copyright terms: Public domain | W3C validator |