Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnmpoi | Structured version Visualization version GIF version |
Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
fnmpoi.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
fnmpoi | ⊢ 𝐹 Fn (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmpoi.2 | . . 3 ⊢ 𝐶 ∈ V | |
2 | 1 | rgen2w 3079 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V |
3 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
4 | 3 | fnmpo 7902 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V → 𝐹 Fn (𝐴 × 𝐵)) |
5 | 2, 4 | ax-mp 5 | 1 ⊢ 𝐹 Fn (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2110 ∀wral 3066 Vcvv 3431 × cxp 5588 Fn wfn 6427 ∈ cmpo 7273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 df-oprab 7275 df-mpo 7276 df-1st 7824 df-2nd 7825 |
This theorem is referenced by: dmmpo 7904 fnoa 8323 fnom 8324 fnoe 8325 fnmap 8605 fnpm 8606 addpqnq 10695 mulpqnq 10698 elq 12689 cnref1o 12724 ccatfn 14273 qnnen 15920 restfn 17133 prdsdsfn 17174 imasdsfn 17223 imasvscafn 17246 homffn 17400 comfffn 17411 comffn 17412 isoval 17475 cofucl 17601 fnfuc 17659 natffn 17663 catcisolem 17823 estrchomfn 17849 funcestrcsetclem4 17858 funcsetcestrclem4 17873 fnxpc 17891 1stfcl 17912 2ndfcl 17913 prfcl 17918 evlfcl 17938 curf1cl 17944 curfcl 17948 hofcl 17975 yonedalem3 17996 yonedainv 17997 plusffn 18333 mulgfval 18700 mulgfvalALT 18701 mulgfn 18703 gimfn 18875 sylow2blem2 19224 scaffn 20142 lmimfn 20286 ipffn 20854 mplsubrglem 21208 tx1stc 22799 tx2ndc 22800 hmeofn 22906 efmndtmd 23250 qustgplem 23270 nmoffn 23873 rrxmfval 24568 mbfimaopnlem 24817 i1fadd 24857 i1fmul 24858 ex-fpar 28822 smatrcl 31742 txomap 31780 qtophaus 31782 pstmxmet 31843 dya2icoseg 32240 dya2iocrfn 32242 fncvm 33215 cntotbnd 35950 rnghmfn 45417 rhmfn 45445 rnghmsscmap2 45500 rnghmsscmap 45501 rngchomffvalALTV 45522 rngchomrnghmresALTV 45523 rhmsscmap2 45546 rhmsscmap 45547 funcringcsetcALTV2lem4 45566 funcringcsetclem4ALTV 45589 srhmsubc 45603 fldc 45610 fldhmsubc 45611 rhmsubclem1 45613 srhmsubcALTV 45621 fldcALTV 45628 fldhmsubcALTV 45629 rhmsubcALTVlem1 45631 rrx2xpref1o 46033 functhinclem1 46291 |
Copyright terms: Public domain | W3C validator |