| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnmpoi | Structured version Visualization version GIF version | ||
| Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
| Ref | Expression |
|---|---|
| fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| fnmpoi.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| fnmpoi | ⊢ 𝐹 Fn (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmpoi.2 | . . 3 ⊢ 𝐶 ∈ V | |
| 2 | 1 | rgen2w 3049 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V |
| 3 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 4 | 3 | fnmpo 8048 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V → 𝐹 Fn (𝐴 × 𝐵)) |
| 5 | 2, 4 | ax-mp 5 | 1 ⊢ 𝐹 Fn (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 × cxp 5636 Fn wfn 6506 ∈ cmpo 7389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 |
| This theorem is referenced by: dmmpo 8050 fnoa 8472 fnom 8473 fnoe 8474 fnmap 8806 fnpm 8807 addpqnq 10891 mulpqnq 10894 mpoaddf 11162 mpomulf 11163 elq 12909 cnref1o 12944 ccatfn 14537 qnnen 16181 restfn 17387 prdsdsfn 17428 imasdsfn 17477 imasvscafn 17500 homffn 17654 comfffn 17665 comffn 17666 isoval 17727 cofucl 17850 fnfuc 17910 natffn 17914 catcisolem 18072 estrchomfn 18096 funcestrcsetclem4 18104 funcsetcestrclem4 18119 fnxpc 18137 1stfcl 18158 2ndfcl 18159 prfcl 18164 evlfcl 18183 curf1cl 18189 curfcl 18193 hofcl 18220 yonedalem3 18241 yonedainv 18242 plusffn 18576 mulgfval 19001 mulgfvalALT 19002 mulgfn 19004 gimfn 19193 sylow2blem2 19551 rnghmfn 20348 rhmfn 20408 rnghmsscmap2 20538 rnghmsscmap 20539 rhmsscmap2 20567 rhmsscmap 20568 srhmsubc 20589 rhmsubclem1 20594 fldc 20693 fldhmsubc 20694 scaffn 20789 lmimfn 20933 ipffn 21560 mplsubrglem 21913 tx1stc 23537 tx2ndc 23538 hmeofn 23644 efmndtmd 23988 qustgplem 24008 nmoffn 24599 rrxmfval 25306 mbfimaopnlem 25556 i1fadd 25596 i1fmul 25597 subsfn 27930 ex-fpar 30391 smatrcl 33786 txomap 33824 qtophaus 33826 pstmxmet 33887 dya2icoseg 34268 dya2iocrfn 34270 fncvm 35244 mpomulnzcnf 36287 cntotbnd 37790 grimfn 47879 grlimfn 47978 rngchomffvalALTV 48266 rngchomrnghmresALTV 48267 rhmsubcALTVlem1 48269 funcringcsetcALTV2lem4 48281 funcringcsetclem4ALTV 48304 srhmsubcALTV 48313 fldcALTV 48320 fldhmsubcALTV 48321 rrx2xpref1o 48707 sectfn 49018 discsubclem 49052 oppffn 49113 swapf2fn 49257 fucofn2 49313 fucoppc 49399 functhinclem1 49433 lanfn 49598 ranfn 49599 |
| Copyright terms: Public domain | W3C validator |