Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnmpoi | Structured version Visualization version GIF version |
Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
fnmpoi.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
fnmpoi | ⊢ 𝐹 Fn (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmpoi.2 | . . 3 ⊢ 𝐶 ∈ V | |
2 | 1 | rgen2w 3067 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V |
3 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
4 | 3 | fnmpo 7941 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V → 𝐹 Fn (𝐴 × 𝐵)) |
5 | 2, 4 | ax-mp 5 | 1 ⊢ 𝐹 Fn (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 ∀wral 3062 Vcvv 3437 × cxp 5598 Fn wfn 6453 ∈ cmpo 7309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fv 6466 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 |
This theorem is referenced by: dmmpo 7943 fnoa 8369 fnom 8370 fnoe 8371 fnmap 8653 fnpm 8654 addpqnq 10740 mulpqnq 10743 elq 12736 cnref1o 12771 ccatfn 14320 qnnen 15967 restfn 17180 prdsdsfn 17221 imasdsfn 17270 imasvscafn 17293 homffn 17447 comfffn 17458 comffn 17459 isoval 17522 cofucl 17648 fnfuc 17706 natffn 17710 catcisolem 17870 estrchomfn 17896 funcestrcsetclem4 17905 funcsetcestrclem4 17920 fnxpc 17938 1stfcl 17959 2ndfcl 17960 prfcl 17965 evlfcl 17985 curf1cl 17991 curfcl 17995 hofcl 18022 yonedalem3 18043 yonedainv 18044 plusffn 18380 mulgfval 18747 mulgfvalALT 18748 mulgfn 18750 gimfn 18922 sylow2blem2 19271 scaffn 20189 lmimfn 20333 ipffn 20901 mplsubrglem 21255 tx1stc 22846 tx2ndc 22847 hmeofn 22953 efmndtmd 23297 qustgplem 23317 nmoffn 23920 rrxmfval 24615 mbfimaopnlem 24864 i1fadd 24904 i1fmul 24905 ex-fpar 28871 smatrcl 31791 txomap 31829 qtophaus 31831 pstmxmet 31892 dya2icoseg 32289 dya2iocrfn 32291 fncvm 33264 cntotbnd 35998 rnghmfn 45506 rhmfn 45534 rnghmsscmap2 45589 rnghmsscmap 45590 rngchomffvalALTV 45611 rngchomrnghmresALTV 45612 rhmsscmap2 45635 rhmsscmap 45636 funcringcsetcALTV2lem4 45655 funcringcsetclem4ALTV 45678 srhmsubc 45692 fldc 45699 fldhmsubc 45700 rhmsubclem1 45702 srhmsubcALTV 45710 fldcALTV 45717 fldhmsubcALTV 45718 rhmsubcALTVlem1 45720 rrx2xpref1o 46122 functhinclem1 46380 |
Copyright terms: Public domain | W3C validator |