![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnmpoi | Structured version Visualization version GIF version |
Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
fnmpoi.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
fnmpoi | ⊢ 𝐹 Fn (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmpoi.2 | . . 3 ⊢ 𝐶 ∈ V | |
2 | 1 | rgen2w 3072 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V |
3 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
4 | 3 | fnmpo 8110 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V → 𝐹 Fn (𝐴 × 𝐵)) |
5 | 2, 4 | ax-mp 5 | 1 ⊢ 𝐹 Fn (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 × cxp 5698 Fn wfn 6568 ∈ cmpo 7450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 |
This theorem is referenced by: dmmpo 8112 fnoa 8564 fnom 8565 fnoe 8566 fnmap 8891 fnpm 8892 addpqnq 11007 mulpqnq 11010 mpoaddf 11278 mpomulf 11279 elq 13015 cnref1o 13050 ccatfn 14620 qnnen 16261 restfn 17484 prdsdsfn 17525 imasdsfn 17574 imasvscafn 17597 homffn 17751 comfffn 17762 comffn 17763 isoval 17826 cofucl 17952 fnfuc 18013 natffn 18017 catcisolem 18177 estrchomfn 18203 funcestrcsetclem4 18212 funcsetcestrclem4 18227 fnxpc 18245 1stfcl 18266 2ndfcl 18267 prfcl 18272 evlfcl 18292 curf1cl 18298 curfcl 18302 hofcl 18329 yonedalem3 18350 yonedainv 18351 plusffn 18687 mulgfval 19109 mulgfvalALT 19110 mulgfn 19112 gimfn 19301 sylow2blem2 19663 rnghmfn 20465 rhmfn 20525 rnghmsscmap2 20651 rnghmsscmap 20652 rhmsscmap2 20680 rhmsscmap 20681 srhmsubc 20702 rhmsubclem1 20707 fldc 20807 fldhmsubc 20808 scaffn 20903 lmimfn 21048 ipffn 21692 mplsubrglem 22047 tx1stc 23679 tx2ndc 23680 hmeofn 23786 efmndtmd 24130 qustgplem 24150 nmoffn 24753 rrxmfval 25459 mbfimaopnlem 25709 i1fadd 25749 i1fmul 25750 subsfn 28074 ex-fpar 30494 smatrcl 33742 txomap 33780 qtophaus 33782 pstmxmet 33843 dya2icoseg 34242 dya2iocrfn 34244 fncvm 35225 mpomulnzcnf 36265 cntotbnd 37756 grimfn 47749 grlimfn 47803 rngchomffvalALTV 48001 rngchomrnghmresALTV 48002 rhmsubcALTVlem1 48004 funcringcsetcALTV2lem4 48016 funcringcsetclem4ALTV 48039 srhmsubcALTV 48048 fldcALTV 48055 fldhmsubcALTV 48056 rrx2xpref1o 48452 functhinclem1 48708 |
Copyright terms: Public domain | W3C validator |