| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnmpoi | Structured version Visualization version GIF version | ||
| Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
| Ref | Expression |
|---|---|
| fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| fnmpoi.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| fnmpoi | ⊢ 𝐹 Fn (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmpoi.2 | . . 3 ⊢ 𝐶 ∈ V | |
| 2 | 1 | rgen2w 3053 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V |
| 3 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 4 | 3 | fnmpo 8007 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V → 𝐹 Fn (𝐴 × 𝐵)) |
| 5 | 2, 4 | ax-mp 5 | 1 ⊢ 𝐹 Fn (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 × cxp 5617 Fn wfn 6481 ∈ cmpo 7354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 |
| This theorem is referenced by: dmmpo 8009 fnoa 8429 fnom 8430 fnoe 8431 fnmap 8763 fnpm 8764 addpqnq 10836 mulpqnq 10839 mpoaddf 11107 mpomulf 11108 elq 12850 cnref1o 12885 ccatfn 14481 qnnen 16124 restfn 17330 prdsdsfn 17371 imasdsfn 17420 imasvscafn 17443 homffn 17601 comfffn 17612 comffn 17613 isoval 17674 cofucl 17797 fnfuc 17857 natffn 17861 catcisolem 18019 estrchomfn 18043 funcestrcsetclem4 18051 funcsetcestrclem4 18066 fnxpc 18084 1stfcl 18105 2ndfcl 18106 prfcl 18111 evlfcl 18130 curf1cl 18136 curfcl 18140 hofcl 18167 yonedalem3 18188 yonedainv 18189 plusffn 18559 mulgfval 18984 mulgfvalALT 18985 mulgfn 18987 gimfn 19175 sylow2blem2 19535 rnghmfn 20359 rhmfn 20416 rnghmsscmap2 20546 rnghmsscmap 20547 rhmsscmap2 20575 rhmsscmap 20576 srhmsubc 20597 rhmsubclem1 20602 fldc 20701 fldhmsubc 20702 scaffn 20818 lmimfn 20962 ipffn 21590 mplsubrglem 21942 tx1stc 23566 tx2ndc 23567 hmeofn 23673 efmndtmd 24017 qustgplem 24037 nmoffn 24627 rrxmfval 25334 mbfimaopnlem 25584 i1fadd 25624 i1fmul 25625 subsfn 27967 ex-fpar 30444 smatrcl 33830 txomap 33868 qtophaus 33870 pstmxmet 33931 dya2icoseg 34311 dya2iocrfn 34313 fncvm 35322 mpomulnzcnf 36364 cntotbnd 37857 grimfn 48004 grlimfn 48104 rngchomffvalALTV 48403 rngchomrnghmresALTV 48404 rhmsubcALTVlem1 48406 funcringcsetcALTV2lem4 48418 funcringcsetclem4ALTV 48441 srhmsubcALTV 48450 fldcALTV 48457 fldhmsubcALTV 48458 rrx2xpref1o 48844 sectfn 49155 discsubclem 49189 oppffn 49250 swapf2fn 49394 fucofn2 49450 fucoppc 49536 functhinclem1 49570 lanfn 49735 ranfn 49736 |
| Copyright terms: Public domain | W3C validator |