![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnmpoi | Structured version Visualization version GIF version |
Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
fnmpoi.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
fnmpoi | ⊢ 𝐹 Fn (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmpoi.2 | . . 3 ⊢ 𝐶 ∈ V | |
2 | 1 | rgen2w 3064 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V |
3 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
4 | 3 | fnmpo 8093 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V → 𝐹 Fn (𝐴 × 𝐵)) |
5 | 2, 4 | ax-mp 5 | 1 ⊢ 𝐹 Fn (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 × cxp 5687 Fn wfn 6558 ∈ cmpo 7433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 |
This theorem is referenced by: dmmpo 8095 fnoa 8545 fnom 8546 fnoe 8547 fnmap 8872 fnpm 8873 addpqnq 10976 mulpqnq 10979 mpoaddf 11247 mpomulf 11248 elq 12990 cnref1o 13025 ccatfn 14607 qnnen 16246 restfn 17471 prdsdsfn 17512 imasdsfn 17561 imasvscafn 17584 homffn 17738 comfffn 17749 comffn 17750 isoval 17813 cofucl 17939 fnfuc 18000 natffn 18004 catcisolem 18164 estrchomfn 18190 funcestrcsetclem4 18199 funcsetcestrclem4 18214 fnxpc 18232 1stfcl 18253 2ndfcl 18254 prfcl 18259 evlfcl 18279 curf1cl 18285 curfcl 18289 hofcl 18316 yonedalem3 18337 yonedainv 18338 plusffn 18675 mulgfval 19100 mulgfvalALT 19101 mulgfn 19103 gimfn 19292 sylow2blem2 19654 rnghmfn 20456 rhmfn 20516 rnghmsscmap2 20646 rnghmsscmap 20647 rhmsscmap2 20675 rhmsscmap 20676 srhmsubc 20697 rhmsubclem1 20702 fldc 20802 fldhmsubc 20803 scaffn 20898 lmimfn 21043 ipffn 21687 mplsubrglem 22042 tx1stc 23674 tx2ndc 23675 hmeofn 23781 efmndtmd 24125 qustgplem 24145 nmoffn 24748 rrxmfval 25454 mbfimaopnlem 25704 i1fadd 25744 i1fmul 25745 subsfn 28071 ex-fpar 30491 smatrcl 33757 txomap 33795 qtophaus 33797 pstmxmet 33858 dya2icoseg 34259 dya2iocrfn 34261 fncvm 35242 mpomulnzcnf 36282 cntotbnd 37783 grimfn 47803 grlimfn 47882 rngchomffvalALTV 48122 rngchomrnghmresALTV 48123 rhmsubcALTVlem1 48125 funcringcsetcALTV2lem4 48137 funcringcsetclem4ALTV 48160 srhmsubcALTV 48169 fldcALTV 48176 fldhmsubcALTV 48177 rrx2xpref1o 48568 functhinclem1 48841 |
Copyright terms: Public domain | W3C validator |