Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpolvN Structured version   Visualization version   GIF version

Theorem lpolvN 38624
Description: The polarity of the whole space is the zero subspace. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lpolv.v 𝑉 = (Base‘𝑊)
lpolv.z 0 = (0g𝑊)
lpolv.p 𝑃 = (LPol‘𝑊)
lpolv.w (𝜑𝑊𝑋)
lpolv.o (𝜑𝑃)
Assertion
Ref Expression
lpolvN (𝜑 → ( 𝑉) = { 0 })

Proof of Theorem lpolvN
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lpolv.o . . 3 (𝜑𝑃)
2 lpolv.w . . . 4 (𝜑𝑊𝑋)
3 lpolv.v . . . . 5 𝑉 = (Base‘𝑊)
4 eqid 2823 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
5 lpolv.z . . . . 5 0 = (0g𝑊)
6 eqid 2823 . . . . 5 (LSAtoms‘𝑊) = (LSAtoms‘𝑊)
7 eqid 2823 . . . . 5 (LSHyp‘𝑊) = (LSHyp‘𝑊)
8 lpolv.p . . . . 5 𝑃 = (LPol‘𝑊)
93, 4, 5, 6, 7, 8islpolN 38621 . . . 4 (𝑊𝑋 → ( 𝑃 ↔ ( :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( 𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥)))))
102, 9syl 17 . . 3 (𝜑 → ( 𝑃 ↔ ( :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( 𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥)))))
111, 10mpbid 234 . 2 (𝜑 → ( :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( 𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥))))
12 simpr1 1190 . 2 (( :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( 𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥))) → ( 𝑉) = { 0 })
1311, 12syl 17 1 (𝜑 → ( 𝑉) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1535   = wceq 1537  wcel 2114  wral 3140  wss 3938  𝒫 cpw 4541  {csn 4569  wf 6353  cfv 6357  Basecbs 16485  0gc0g 16715  LSubSpclss 19705  LSAtomsclsa 36112  LSHypclsh 36113  LPolclpoN 38618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-map 8410  df-lpolN 38619
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator