![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lpolvN | Structured version Visualization version GIF version |
Description: The polarity of the whole space is the zero subspace. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lpolv.v | ⊢ 𝑉 = (Base‘𝑊) |
lpolv.z | ⊢ 0 = (0g‘𝑊) |
lpolv.p | ⊢ 𝑃 = (LPol‘𝑊) |
lpolv.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
lpolv.o | ⊢ (𝜑 → ⊥ ∈ 𝑃) |
Ref | Expression |
---|---|
lpolvN | ⊢ (𝜑 → ( ⊥ ‘𝑉) = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpolv.o | . . 3 ⊢ (𝜑 → ⊥ ∈ 𝑃) | |
2 | lpolv.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
3 | lpolv.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
4 | eqid 2735 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
5 | lpolv.z | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
6 | eqid 2735 | . . . . 5 ⊢ (LSAtoms‘𝑊) = (LSAtoms‘𝑊) | |
7 | eqid 2735 | . . . . 5 ⊢ (LSHyp‘𝑊) = (LSHyp‘𝑊) | |
8 | lpolv.p | . . . . 5 ⊢ 𝑃 = (LPol‘𝑊) | |
9 | 3, 4, 5, 6, 7, 8 | islpolN 41466 | . . . 4 ⊢ (𝑊 ∈ 𝑋 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) |
10 | 2, 9 | syl 17 | . . 3 ⊢ (𝜑 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) |
11 | 1, 10 | mpbid 232 | . 2 ⊢ (𝜑 → ( ⊥ :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)))) |
12 | simpr1 1193 | . 2 ⊢ (( ⊥ :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))) → ( ⊥ ‘𝑉) = { 0 }) | |
13 | 11, 12 | syl 17 | 1 ⊢ (𝜑 → ( ⊥ ‘𝑉) = { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1535 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ⊆ wss 3963 𝒫 cpw 4605 {csn 4631 ⟶wf 6559 ‘cfv 6563 Basecbs 17245 0gc0g 17486 LSubSpclss 20947 LSAtomsclsa 38956 LSHypclsh 38957 LPolclpoN 41463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-lpolN 41464 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |