Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lpolvN | Structured version Visualization version GIF version |
Description: The polarity of the whole space is the zero subspace. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lpolv.v | ⊢ 𝑉 = (Base‘𝑊) |
lpolv.z | ⊢ 0 = (0g‘𝑊) |
lpolv.p | ⊢ 𝑃 = (LPol‘𝑊) |
lpolv.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
lpolv.o | ⊢ (𝜑 → ⊥ ∈ 𝑃) |
Ref | Expression |
---|---|
lpolvN | ⊢ (𝜑 → ( ⊥ ‘𝑉) = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpolv.o | . . 3 ⊢ (𝜑 → ⊥ ∈ 𝑃) | |
2 | lpolv.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
3 | lpolv.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
4 | eqid 2738 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
5 | lpolv.z | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
6 | eqid 2738 | . . . . 5 ⊢ (LSAtoms‘𝑊) = (LSAtoms‘𝑊) | |
7 | eqid 2738 | . . . . 5 ⊢ (LSHyp‘𝑊) = (LSHyp‘𝑊) | |
8 | lpolv.p | . . . . 5 ⊢ 𝑃 = (LPol‘𝑊) | |
9 | 3, 4, 5, 6, 7, 8 | islpolN 39424 | . . . 4 ⊢ (𝑊 ∈ 𝑋 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) |
10 | 2, 9 | syl 17 | . . 3 ⊢ (𝜑 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) |
11 | 1, 10 | mpbid 231 | . 2 ⊢ (𝜑 → ( ⊥ :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)))) |
12 | simpr1 1192 | . 2 ⊢ (( ⊥ :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))) → ( ⊥ ‘𝑉) = { 0 }) | |
13 | 11, 12 | syl 17 | 1 ⊢ (𝜑 → ( ⊥ ‘𝑉) = { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 𝒫 cpw 4530 {csn 4558 ⟶wf 6414 ‘cfv 6418 Basecbs 16840 0gc0g 17067 LSubSpclss 20108 LSAtomsclsa 36915 LSHypclsh 36916 LPolclpoN 39421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-lpolN 39422 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |