![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lpolvN | Structured version Visualization version GIF version |
Description: The polarity of the whole space is the zero subspace. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lpolv.v | β’ π = (Baseβπ) |
lpolv.z | β’ 0 = (0gβπ) |
lpolv.p | β’ π = (LPolβπ) |
lpolv.w | β’ (π β π β π) |
lpolv.o | β’ (π β β₯ β π) |
Ref | Expression |
---|---|
lpolvN | β’ (π β ( β₯ βπ) = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpolv.o | . . 3 β’ (π β β₯ β π) | |
2 | lpolv.w | . . . 4 β’ (π β π β π) | |
3 | lpolv.v | . . . . 5 β’ π = (Baseβπ) | |
4 | eqid 2732 | . . . . 5 β’ (LSubSpβπ) = (LSubSpβπ) | |
5 | lpolv.z | . . . . 5 β’ 0 = (0gβπ) | |
6 | eqid 2732 | . . . . 5 β’ (LSAtomsβπ) = (LSAtomsβπ) | |
7 | eqid 2732 | . . . . 5 β’ (LSHypβπ) = (LSHypβπ) | |
8 | lpolv.p | . . . . 5 β’ π = (LPolβπ) | |
9 | 3, 4, 5, 6, 7, 8 | islpolN 40657 | . . . 4 β’ (π β π β ( β₯ β π β ( β₯ :π« πβΆ(LSubSpβπ) β§ (( β₯ βπ) = { 0 } β§ βπ₯βπ¦((π₯ β π β§ π¦ β π β§ π₯ β π¦) β ( β₯ βπ¦) β ( β₯ βπ₯)) β§ βπ₯ β (LSAtomsβπ)(( β₯ βπ₯) β (LSHypβπ) β§ ( β₯ β( β₯ βπ₯)) = π₯))))) |
10 | 2, 9 | syl 17 | . . 3 β’ (π β ( β₯ β π β ( β₯ :π« πβΆ(LSubSpβπ) β§ (( β₯ βπ) = { 0 } β§ βπ₯βπ¦((π₯ β π β§ π¦ β π β§ π₯ β π¦) β ( β₯ βπ¦) β ( β₯ βπ₯)) β§ βπ₯ β (LSAtomsβπ)(( β₯ βπ₯) β (LSHypβπ) β§ ( β₯ β( β₯ βπ₯)) = π₯))))) |
11 | 1, 10 | mpbid 231 | . 2 β’ (π β ( β₯ :π« πβΆ(LSubSpβπ) β§ (( β₯ βπ) = { 0 } β§ βπ₯βπ¦((π₯ β π β§ π¦ β π β§ π₯ β π¦) β ( β₯ βπ¦) β ( β₯ βπ₯)) β§ βπ₯ β (LSAtomsβπ)(( β₯ βπ₯) β (LSHypβπ) β§ ( β₯ β( β₯ βπ₯)) = π₯)))) |
12 | simpr1 1194 | . 2 β’ (( β₯ :π« πβΆ(LSubSpβπ) β§ (( β₯ βπ) = { 0 } β§ βπ₯βπ¦((π₯ β π β§ π¦ β π β§ π₯ β π¦) β ( β₯ βπ¦) β ( β₯ βπ₯)) β§ βπ₯ β (LSAtomsβπ)(( β₯ βπ₯) β (LSHypβπ) β§ ( β₯ β( β₯ βπ₯)) = π₯))) β ( β₯ βπ) = { 0 }) | |
13 | 11, 12 | syl 17 | 1 β’ (π β ( β₯ βπ) = { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 βwal 1539 = wceq 1541 β wcel 2106 βwral 3061 β wss 3948 π« cpw 4602 {csn 4628 βΆwf 6539 βcfv 6543 Basecbs 17148 0gc0g 17389 LSubSpclss 20686 LSAtomsclsa 38147 LSHypclsh 38148 LPolclpoN 40654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-map 8824 df-lpolN 40655 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |