Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpolfN Structured version   Visualization version   GIF version

Theorem lpolfN 39111
Description: Functionality of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lpolf.v 𝑉 = (Base‘𝑊)
lpolf.s 𝑆 = (LSubSp‘𝑊)
lpolf.p 𝑃 = (LPol‘𝑊)
lpolf.w (𝜑𝑊𝑋)
lpolf.o (𝜑𝑃)
Assertion
Ref Expression
lpolfN (𝜑 :𝒫 𝑉𝑆)

Proof of Theorem lpolfN
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lpolf.o . . 3 (𝜑𝑃)
2 lpolf.w . . . 4 (𝜑𝑊𝑋)
3 lpolf.v . . . . 5 𝑉 = (Base‘𝑊)
4 lpolf.s . . . . 5 𝑆 = (LSubSp‘𝑊)
5 eqid 2738 . . . . 5 (0g𝑊) = (0g𝑊)
6 eqid 2738 . . . . 5 (LSAtoms‘𝑊) = (LSAtoms‘𝑊)
7 eqid 2738 . . . . 5 (LSHyp‘𝑊) = (LSHyp‘𝑊)
8 lpolf.p . . . . 5 𝑃 = (LPol‘𝑊)
93, 4, 5, 6, 7, 8islpolN 39109 . . . 4 (𝑊𝑋 → ( 𝑃 ↔ ( :𝒫 𝑉𝑆 ∧ (( 𝑉) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥)))))
102, 9syl 17 . . 3 (𝜑 → ( 𝑃 ↔ ( :𝒫 𝑉𝑆 ∧ (( 𝑉) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥)))))
111, 10mpbid 235 . 2 (𝜑 → ( :𝒫 𝑉𝑆 ∧ (( 𝑉) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥))))
1211simpld 498 1 (𝜑 :𝒫 𝑉𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088  wal 1540   = wceq 1542  wcel 2113  wral 3053  wss 3841  𝒫 cpw 4485  {csn 4513  wf 6329  cfv 6333  Basecbs 16579  0gc0g 16809  LSubSpclss 19815  LSAtomsclsa 36600  LSHypclsh 36601  LPolclpoN 39106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3399  df-sbc 3680  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-fv 6341  df-ov 7167  df-oprab 7168  df-mpo 7169  df-map 8432  df-lpolN 39107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator