Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lpolfN | Structured version Visualization version GIF version |
Description: Functionality of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lpolf.v | ⊢ 𝑉 = (Base‘𝑊) |
lpolf.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lpolf.p | ⊢ 𝑃 = (LPol‘𝑊) |
lpolf.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
lpolf.o | ⊢ (𝜑 → ⊥ ∈ 𝑃) |
Ref | Expression |
---|---|
lpolfN | ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpolf.o | . . 3 ⊢ (𝜑 → ⊥ ∈ 𝑃) | |
2 | lpolf.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
3 | lpolf.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
4 | lpolf.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
5 | eqid 2738 | . . . . 5 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
6 | eqid 2738 | . . . . 5 ⊢ (LSAtoms‘𝑊) = (LSAtoms‘𝑊) | |
7 | eqid 2738 | . . . . 5 ⊢ (LSHyp‘𝑊) = (LSHyp‘𝑊) | |
8 | lpolf.p | . . . . 5 ⊢ 𝑃 = (LPol‘𝑊) | |
9 | 3, 4, 5, 6, 7, 8 | islpolN 39497 | . . . 4 ⊢ (𝑊 ∈ 𝑋 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) |
10 | 2, 9 | syl 17 | . . 3 ⊢ (𝜑 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) |
11 | 1, 10 | mpbid 231 | . 2 ⊢ (𝜑 → ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)))) |
12 | 11 | simpld 495 | 1 ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∀wal 1537 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 𝒫 cpw 4533 {csn 4561 ⟶wf 6429 ‘cfv 6433 Basecbs 16912 0gc0g 17150 LSubSpclss 20193 LSAtomsclsa 36988 LSHypclsh 36989 LPolclpoN 39494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-lpolN 39495 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |