![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lpolfN | Structured version Visualization version GIF version |
Description: Functionality of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lpolf.v | ⊢ 𝑉 = (Base‘𝑊) |
lpolf.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lpolf.p | ⊢ 𝑃 = (LPol‘𝑊) |
lpolf.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
lpolf.o | ⊢ (𝜑 → ⊥ ∈ 𝑃) |
Ref | Expression |
---|---|
lpolfN | ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpolf.o | . . 3 ⊢ (𝜑 → ⊥ ∈ 𝑃) | |
2 | lpolf.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
3 | lpolf.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
4 | lpolf.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
5 | eqid 2740 | . . . . 5 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
6 | eqid 2740 | . . . . 5 ⊢ (LSAtoms‘𝑊) = (LSAtoms‘𝑊) | |
7 | eqid 2740 | . . . . 5 ⊢ (LSHyp‘𝑊) = (LSHyp‘𝑊) | |
8 | lpolf.p | . . . . 5 ⊢ 𝑃 = (LPol‘𝑊) | |
9 | 3, 4, 5, 6, 7, 8 | islpolN 41440 | . . . 4 ⊢ (𝑊 ∈ 𝑋 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) |
10 | 2, 9 | syl 17 | . . 3 ⊢ (𝜑 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) |
11 | 1, 10 | mpbid 232 | . 2 ⊢ (𝜑 → ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)))) |
12 | 11 | simpld 494 | 1 ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 𝒫 cpw 4622 {csn 4648 ⟶wf 6569 ‘cfv 6573 Basecbs 17258 0gc0g 17499 LSubSpclss 20952 LSAtomsclsa 38930 LSHypclsh 38931 LPolclpoN 41437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-lpolN 41438 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |