Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpolfN Structured version   Visualization version   GIF version

Theorem lpolfN 41509
Description: Functionality of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lpolf.v 𝑉 = (Base‘𝑊)
lpolf.s 𝑆 = (LSubSp‘𝑊)
lpolf.p 𝑃 = (LPol‘𝑊)
lpolf.w (𝜑𝑊𝑋)
lpolf.o (𝜑𝑃)
Assertion
Ref Expression
lpolfN (𝜑 :𝒫 𝑉𝑆)

Proof of Theorem lpolfN
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lpolf.o . . 3 (𝜑𝑃)
2 lpolf.w . . . 4 (𝜑𝑊𝑋)
3 lpolf.v . . . . 5 𝑉 = (Base‘𝑊)
4 lpolf.s . . . . 5 𝑆 = (LSubSp‘𝑊)
5 eqid 2736 . . . . 5 (0g𝑊) = (0g𝑊)
6 eqid 2736 . . . . 5 (LSAtoms‘𝑊) = (LSAtoms‘𝑊)
7 eqid 2736 . . . . 5 (LSHyp‘𝑊) = (LSHyp‘𝑊)
8 lpolf.p . . . . 5 𝑃 = (LPol‘𝑊)
93, 4, 5, 6, 7, 8islpolN 41507 . . . 4 (𝑊𝑋 → ( 𝑃 ↔ ( :𝒫 𝑉𝑆 ∧ (( 𝑉) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥)))))
102, 9syl 17 . . 3 (𝜑 → ( 𝑃 ↔ ( :𝒫 𝑉𝑆 ∧ (( 𝑉) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥)))))
111, 10mpbid 232 . 2 (𝜑 → ( :𝒫 𝑉𝑆 ∧ (( 𝑉) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥))))
1211simpld 494 1 (𝜑 :𝒫 𝑉𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wral 3052  wss 3931  𝒫 cpw 4580  {csn 4606  wf 6532  cfv 6536  Basecbs 17233  0gc0g 17458  LSubSpclss 20893  LSAtomsclsa 38997  LSHypclsh 38998  LPolclpoN 41504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-lpolN 41505
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator