|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lpolfN | Structured version Visualization version GIF version | ||
| Description: Functionality of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| lpolf.v | ⊢ 𝑉 = (Base‘𝑊) | 
| lpolf.s | ⊢ 𝑆 = (LSubSp‘𝑊) | 
| lpolf.p | ⊢ 𝑃 = (LPol‘𝑊) | 
| lpolf.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) | 
| lpolf.o | ⊢ (𝜑 → ⊥ ∈ 𝑃) | 
| Ref | Expression | 
|---|---|
| lpolfN | ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lpolf.o | . . 3 ⊢ (𝜑 → ⊥ ∈ 𝑃) | |
| 2 | lpolf.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 3 | lpolf.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | lpolf.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 5 | eqid 2736 | . . . . 5 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 6 | eqid 2736 | . . . . 5 ⊢ (LSAtoms‘𝑊) = (LSAtoms‘𝑊) | |
| 7 | eqid 2736 | . . . . 5 ⊢ (LSHyp‘𝑊) = (LSHyp‘𝑊) | |
| 8 | lpolf.p | . . . . 5 ⊢ 𝑃 = (LPol‘𝑊) | |
| 9 | 3, 4, 5, 6, 7, 8 | islpolN 41486 | . . . 4 ⊢ (𝑊 ∈ 𝑋 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) | 
| 10 | 2, 9 | syl 17 | . . 3 ⊢ (𝜑 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) | 
| 11 | 1, 10 | mpbid 232 | . 2 ⊢ (𝜑 → ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)))) | 
| 12 | 11 | simpld 494 | 1 ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1537 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ⊆ wss 3950 𝒫 cpw 4599 {csn 4625 ⟶wf 6556 ‘cfv 6560 Basecbs 17248 0gc0g 17485 LSubSpclss 20930 LSAtomsclsa 38976 LSHypclsh 38977 LPolclpoN 41483 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-map 8869 df-lpolN 41484 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |