![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochlkr | Structured version Visualization version GIF version |
Description: Equivalent conditions for the closure of a kernel to be a hyperplane. (Contributed by NM, 29-Oct-2014.) |
Ref | Expression |
---|---|
dochlkr.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dochlkr.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
dochlkr.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dochlkr.f | ⊢ 𝐹 = (LFnl‘𝑈) |
dochlkr.y | ⊢ 𝑌 = (LSHyp‘𝑈) |
dochlkr.l | ⊢ 𝐿 = (LKer‘𝑈) |
dochlkr.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dochlkr.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Ref | Expression |
---|---|
dochlkr | ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ (𝐿‘𝐺) ∈ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochlkr.k | . . . . . . . 8 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | eqid 2731 | . . . . . . . . 9 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
3 | dochlkr.f | . . . . . . . . 9 ⊢ 𝐹 = (LFnl‘𝑈) | |
4 | dochlkr.l | . . . . . . . . 9 ⊢ 𝐿 = (LKer‘𝑈) | |
5 | dochlkr.h | . . . . . . . . . 10 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | dochlkr.u | . . . . . . . . . 10 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | 5, 6, 1 | dvhlmod 39786 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ LMod) |
8 | dochlkr.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
9 | 2, 3, 4, 7, 8 | lkrssv 37771 | . . . . . . . 8 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (Base‘𝑈)) |
10 | dochlkr.o | . . . . . . . . 9 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
11 | 5, 6, 2, 10 | dochocss 40042 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝐺) ⊆ (Base‘𝑈)) → (𝐿‘𝐺) ⊆ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺)))) |
12 | 1, 9, 11 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺)))) |
13 | 12 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → (𝐿‘𝐺) ⊆ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺)))) |
14 | dochlkr.y | . . . . . . 7 ⊢ 𝑌 = (LSHyp‘𝑈) | |
15 | 5, 6, 1 | dvhlvec 39785 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LVec) |
16 | 15 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → 𝑈 ∈ LVec) |
17 | 7 | adantr 481 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → 𝑈 ∈ LMod) |
18 | simpr 485 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) | |
19 | 2, 14, 17, 18 | lshpne 37657 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (Base‘𝑈)) |
20 | 19 | ex 413 | . . . . . . . . 9 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (Base‘𝑈))) |
21 | 2, 14, 3, 4, 15, 8 | lkrshpor 37782 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((𝐿‘𝐺) ∈ 𝑌 ∨ (𝐿‘𝐺) = (Base‘𝑈))) |
22 | 21 | ord 862 | . . . . . . . . . . 11 ⊢ (𝜑 → (¬ (𝐿‘𝐺) ∈ 𝑌 → (𝐿‘𝐺) = (Base‘𝑈))) |
23 | 2fveq3 6883 | . . . . . . . . . . . . . 14 ⊢ ((𝐿‘𝐺) = (Base‘𝑈) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = ( ⊥ ‘( ⊥ ‘(Base‘𝑈)))) | |
24 | 23 | adantl 482 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = (Base‘𝑈)) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = ( ⊥ ‘( ⊥ ‘(Base‘𝑈)))) |
25 | 1 | adantr 481 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = (Base‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
26 | 5, 6, 10, 2, 25 | dochoc1 40037 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = (Base‘𝑈)) → ( ⊥ ‘( ⊥ ‘(Base‘𝑈))) = (Base‘𝑈)) |
27 | 24, 26 | eqtrd 2771 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = (Base‘𝑈)) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (Base‘𝑈)) |
28 | 27 | ex 413 | . . . . . . . . . . 11 ⊢ (𝜑 → ((𝐿‘𝐺) = (Base‘𝑈) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (Base‘𝑈))) |
29 | 22, 28 | syld 47 | . . . . . . . . . 10 ⊢ (𝜑 → (¬ (𝐿‘𝐺) ∈ 𝑌 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (Base‘𝑈))) |
30 | 29 | necon1ad 2956 | . . . . . . . . 9 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (Base‘𝑈) → (𝐿‘𝐺) ∈ 𝑌)) |
31 | 20, 30 | syld 47 | . . . . . . . 8 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 → (𝐿‘𝐺) ∈ 𝑌)) |
32 | 31 | imp 407 | . . . . . . 7 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → (𝐿‘𝐺) ∈ 𝑌) |
33 | 14, 16, 32, 18 | lshpcmp 37663 | . . . . . 6 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → ((𝐿‘𝐺) ⊆ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ↔ (𝐿‘𝐺) = ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))))) |
34 | 13, 33 | mpbid 231 | . . . . 5 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → (𝐿‘𝐺) = ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺)))) |
35 | 34 | eqcomd 2737 | . . . 4 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
36 | 35, 32 | jca 512 | . . 3 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ (𝐿‘𝐺) ∈ 𝑌)) |
37 | 36 | ex 413 | . 2 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ (𝐿‘𝐺) ∈ 𝑌))) |
38 | eleq1 2820 | . . 3 ⊢ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 ↔ (𝐿‘𝐺) ∈ 𝑌)) | |
39 | 38 | biimpar 478 | . 2 ⊢ ((( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ (𝐿‘𝐺) ∈ 𝑌) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) |
40 | 37, 39 | impbid1 224 | 1 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ (𝐿‘𝐺) ∈ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2939 ⊆ wss 3944 ‘cfv 6532 Basecbs 17126 LModclmod 20420 LVecclvec 20662 LSHypclsh 37650 LFnlclfn 37732 LKerclk 37760 HLchlt 38025 LHypclh 38660 DVecHcdvh 39754 ocHcoch 40023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 ax-riotaBAD 37628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-tpos 8193 df-undef 8240 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-er 8686 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-2 12257 df-3 12258 df-4 12259 df-5 12260 df-6 12261 df-n0 12455 df-z 12541 df-uz 12805 df-fz 13467 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17127 df-ress 17156 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-0g 17369 df-proset 18230 df-poset 18248 df-plt 18265 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-p0 18360 df-p1 18361 df-lat 18367 df-clat 18434 df-mgm 18543 df-sgrp 18592 df-mnd 18603 df-submnd 18648 df-grp 18797 df-minusg 18798 df-sbg 18799 df-subg 18975 df-cntz 19147 df-lsm 19468 df-cmn 19614 df-abl 19615 df-mgp 19947 df-ur 19964 df-ring 20016 df-oppr 20102 df-dvdsr 20123 df-unit 20124 df-invr 20154 df-dvr 20165 df-drng 20267 df-lmod 20422 df-lss 20492 df-lsp 20532 df-lvec 20663 df-lsatoms 37651 df-lshyp 37652 df-lfl 37733 df-lkr 37761 df-oposet 37851 df-ol 37853 df-oml 37854 df-covers 37941 df-ats 37942 df-atl 37973 df-cvlat 37997 df-hlat 38026 df-llines 38174 df-lplanes 38175 df-lvols 38176 df-lines 38177 df-psubsp 38179 df-pmap 38180 df-padd 38472 df-lhyp 38664 df-laut 38665 df-ldil 38780 df-ltrn 38781 df-trl 38835 df-tendo 39431 df-edring 39433 df-disoa 39705 df-dvech 39755 df-dib 39815 df-dic 39849 df-dih 39905 df-doch 40024 |
This theorem is referenced by: dochkrshp 40062 dochkrshp2 40063 mapdordlem1a 40310 mapdordlem2 40313 |
Copyright terms: Public domain | W3C validator |