Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpnel Structured version   Visualization version   GIF version

Theorem lshpnel 36997
Description: A hyperplane's generating vector does not belong to the hyperplane. (Contributed by NM, 3-Jul-2014.)
Hypotheses
Ref Expression
lshpnel.v 𝑉 = (Base‘𝑊)
lshpnel.n 𝑁 = (LSpan‘𝑊)
lshpnel.p = (LSSum‘𝑊)
lshpnel.h 𝐻 = (LSHyp‘𝑊)
lshpnel.w (𝜑𝑊 ∈ LMod)
lshpnel.u (𝜑𝑈𝐻)
lshpnel.x (𝜑𝑋𝑉)
lshpnel.e (𝜑 → (𝑈 (𝑁‘{𝑋})) = 𝑉)
Assertion
Ref Expression
lshpnel (𝜑 → ¬ 𝑋𝑈)

Proof of Theorem lshpnel
StepHypRef Expression
1 lshpnel.v . . 3 𝑉 = (Base‘𝑊)
2 lshpnel.h . . 3 𝐻 = (LSHyp‘𝑊)
3 lshpnel.w . . 3 (𝜑𝑊 ∈ LMod)
4 lshpnel.u . . 3 (𝜑𝑈𝐻)
51, 2, 3, 4lshpne 36996 . 2 (𝜑𝑈𝑉)
63adantr 481 . . . . . . . 8 ((𝜑𝑋𝑈) → 𝑊 ∈ LMod)
7 eqid 2738 . . . . . . . . 9 (LSubSp‘𝑊) = (LSubSp‘𝑊)
87lsssssubg 20220 . . . . . . . 8 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
96, 8syl 17 . . . . . . 7 ((𝜑𝑋𝑈) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
107, 2, 3, 4lshplss 36995 . . . . . . . 8 (𝜑𝑈 ∈ (LSubSp‘𝑊))
1110adantr 481 . . . . . . 7 ((𝜑𝑋𝑈) → 𝑈 ∈ (LSubSp‘𝑊))
129, 11sseldd 3922 . . . . . 6 ((𝜑𝑋𝑈) → 𝑈 ∈ (SubGrp‘𝑊))
13 lshpnel.x . . . . . . . . 9 (𝜑𝑋𝑉)
1413adantr 481 . . . . . . . 8 ((𝜑𝑋𝑈) → 𝑋𝑉)
15 lshpnel.n . . . . . . . . 9 𝑁 = (LSpan‘𝑊)
161, 7, 15lspsncl 20239 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
176, 14, 16syl2anc 584 . . . . . . 7 ((𝜑𝑋𝑈) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
189, 17sseldd 3922 . . . . . 6 ((𝜑𝑋𝑈) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
19 simpr 485 . . . . . . 7 ((𝜑𝑋𝑈) → 𝑋𝑈)
207, 15, 6, 11, 19lspsnel5a 20258 . . . . . 6 ((𝜑𝑋𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈)
21 lshpnel.p . . . . . . 7 = (LSSum‘𝑊)
2221lsmss2 19273 . . . . . 6 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ⊆ 𝑈) → (𝑈 (𝑁‘{𝑋})) = 𝑈)
2312, 18, 20, 22syl3anc 1370 . . . . 5 ((𝜑𝑋𝑈) → (𝑈 (𝑁‘{𝑋})) = 𝑈)
24 lshpnel.e . . . . . 6 (𝜑 → (𝑈 (𝑁‘{𝑋})) = 𝑉)
2524adantr 481 . . . . 5 ((𝜑𝑋𝑈) → (𝑈 (𝑁‘{𝑋})) = 𝑉)
2623, 25eqtr3d 2780 . . . 4 ((𝜑𝑋𝑈) → 𝑈 = 𝑉)
2726ex 413 . . 3 (𝜑 → (𝑋𝑈𝑈 = 𝑉))
2827necon3ad 2956 . 2 (𝜑 → (𝑈𝑉 → ¬ 𝑋𝑈))
295, 28mpd 15 1 (𝜑 → ¬ 𝑋𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wss 3887  {csn 4561  cfv 6433  (class class class)co 7275  Basecbs 16912  SubGrpcsubg 18749  LSSumclsm 19239  LModclmod 20123  LSubSpclss 20193  LSpanclspn 20233  LSHypclsh 36989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-lsm 19241  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lshyp 36991
This theorem is referenced by:  lshpnelb  36998  lshpne0  37000  lshpdisj  37001
  Copyright terms: Public domain W3C validator