![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpnel | Structured version Visualization version GIF version |
Description: A hyperplane's generating vector does not belong to the hyperplane. (Contributed by NM, 3-Jul-2014.) |
Ref | Expression |
---|---|
lshpnel.v | β’ π = (Baseβπ) |
lshpnel.n | β’ π = (LSpanβπ) |
lshpnel.p | β’ β = (LSSumβπ) |
lshpnel.h | β’ π» = (LSHypβπ) |
lshpnel.w | β’ (π β π β LMod) |
lshpnel.u | β’ (π β π β π») |
lshpnel.x | β’ (π β π β π) |
lshpnel.e | β’ (π β (π β (πβ{π})) = π) |
Ref | Expression |
---|---|
lshpnel | β’ (π β Β¬ π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpnel.v | . . 3 β’ π = (Baseβπ) | |
2 | lshpnel.h | . . 3 β’ π» = (LSHypβπ) | |
3 | lshpnel.w | . . 3 β’ (π β π β LMod) | |
4 | lshpnel.u | . . 3 β’ (π β π β π») | |
5 | 1, 2, 3, 4 | lshpne 38486 | . 2 β’ (π β π β π) |
6 | 3 | adantr 479 | . . . . . . . 8 β’ ((π β§ π β π) β π β LMod) |
7 | eqid 2728 | . . . . . . . . 9 β’ (LSubSpβπ) = (LSubSpβπ) | |
8 | 7 | lsssssubg 20849 | . . . . . . . 8 β’ (π β LMod β (LSubSpβπ) β (SubGrpβπ)) |
9 | 6, 8 | syl 17 | . . . . . . 7 β’ ((π β§ π β π) β (LSubSpβπ) β (SubGrpβπ)) |
10 | 7, 2, 3, 4 | lshplss 38485 | . . . . . . . 8 β’ (π β π β (LSubSpβπ)) |
11 | 10 | adantr 479 | . . . . . . 7 β’ ((π β§ π β π) β π β (LSubSpβπ)) |
12 | 9, 11 | sseldd 3983 | . . . . . 6 β’ ((π β§ π β π) β π β (SubGrpβπ)) |
13 | lshpnel.x | . . . . . . . . 9 β’ (π β π β π) | |
14 | 13 | adantr 479 | . . . . . . . 8 β’ ((π β§ π β π) β π β π) |
15 | lshpnel.n | . . . . . . . . 9 β’ π = (LSpanβπ) | |
16 | 1, 7, 15 | lspsncl 20868 | . . . . . . . 8 β’ ((π β LMod β§ π β π) β (πβ{π}) β (LSubSpβπ)) |
17 | 6, 14, 16 | syl2anc 582 | . . . . . . 7 β’ ((π β§ π β π) β (πβ{π}) β (LSubSpβπ)) |
18 | 9, 17 | sseldd 3983 | . . . . . 6 β’ ((π β§ π β π) β (πβ{π}) β (SubGrpβπ)) |
19 | simpr 483 | . . . . . . 7 β’ ((π β§ π β π) β π β π) | |
20 | 7, 15, 6, 11, 19 | lspsnel5a 20887 | . . . . . 6 β’ ((π β§ π β π) β (πβ{π}) β π) |
21 | lshpnel.p | . . . . . . 7 β’ β = (LSSumβπ) | |
22 | 21 | lsmss2 19629 | . . . . . 6 β’ ((π β (SubGrpβπ) β§ (πβ{π}) β (SubGrpβπ) β§ (πβ{π}) β π) β (π β (πβ{π})) = π) |
23 | 12, 18, 20, 22 | syl3anc 1368 | . . . . 5 β’ ((π β§ π β π) β (π β (πβ{π})) = π) |
24 | lshpnel.e | . . . . . 6 β’ (π β (π β (πβ{π})) = π) | |
25 | 24 | adantr 479 | . . . . 5 β’ ((π β§ π β π) β (π β (πβ{π})) = π) |
26 | 23, 25 | eqtr3d 2770 | . . . 4 β’ ((π β§ π β π) β π = π) |
27 | 26 | ex 411 | . . 3 β’ (π β (π β π β π = π)) |
28 | 27 | necon3ad 2950 | . 2 β’ (π β (π β π β Β¬ π β π)) |
29 | 5, 28 | mpd 15 | 1 β’ (π β Β¬ π β π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2937 β wss 3949 {csn 4632 βcfv 6553 (class class class)co 7426 Basecbs 17187 SubGrpcsubg 19082 LSSumclsm 19596 LModclmod 20750 LSubSpclss 20822 LSpanclspn 20862 LSHypclsh 38479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-0g 17430 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-submnd 18748 df-grp 18900 df-minusg 18901 df-sbg 18902 df-subg 19085 df-lsm 19598 df-mgp 20082 df-ur 20129 df-ring 20182 df-lmod 20752 df-lss 20823 df-lsp 20863 df-lshyp 38481 |
This theorem is referenced by: lshpnelb 38488 lshpne0 38490 lshpdisj 38491 |
Copyright terms: Public domain | W3C validator |