![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpnel | Structured version Visualization version GIF version |
Description: A hyperplane's generating vector does not belong to the hyperplane. (Contributed by NM, 3-Jul-2014.) |
Ref | Expression |
---|---|
lshpnel.v | ⊢ 𝑉 = (Base‘𝑊) |
lshpnel.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lshpnel.p | ⊢ ⊕ = (LSSum‘𝑊) |
lshpnel.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshpnel.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lshpnel.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
lshpnel.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lshpnel.e | ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) |
Ref | Expression |
---|---|
lshpnel | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpnel.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lshpnel.h | . . 3 ⊢ 𝐻 = (LSHyp‘𝑊) | |
3 | lshpnel.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
4 | lshpnel.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
5 | 1, 2, 3, 4 | lshpne 38693 | . 2 ⊢ (𝜑 → 𝑈 ≠ 𝑉) |
6 | 3 | adantr 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑊 ∈ LMod) |
7 | eqid 2726 | . . . . . . . . 9 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
8 | 7 | lsssssubg 20931 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
9 | 6, 8 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
10 | 7, 2, 3, 4 | lshplss 38692 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑊)) |
11 | 10 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑈 ∈ (LSubSp‘𝑊)) |
12 | 9, 11 | sseldd 3979 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑈 ∈ (SubGrp‘𝑊)) |
13 | lshpnel.x | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
14 | 13 | adantr 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
15 | lshpnel.n | . . . . . . . . 9 ⊢ 𝑁 = (LSpan‘𝑊) | |
16 | 1, 7, 15 | lspsncl 20950 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
17 | 6, 14, 16 | syl2anc 582 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
18 | 9, 17 | sseldd 3979 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
19 | simpr 483 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑈) | |
20 | 7, 15, 6, 11, 19 | ellspsn5 20969 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
21 | lshpnel.p | . . . . . . 7 ⊢ ⊕ = (LSSum‘𝑊) | |
22 | 21 | lsmss2 19661 | . . . . . 6 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ⊆ 𝑈) → (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑈) |
23 | 12, 18, 20, 22 | syl3anc 1368 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑈) |
24 | lshpnel.e | . . . . . 6 ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) | |
25 | 24 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) |
26 | 23, 25 | eqtr3d 2768 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑈 = 𝑉) |
27 | 26 | ex 411 | . . 3 ⊢ (𝜑 → (𝑋 ∈ 𝑈 → 𝑈 = 𝑉)) |
28 | 27 | necon3ad 2943 | . 2 ⊢ (𝜑 → (𝑈 ≠ 𝑉 → ¬ 𝑋 ∈ 𝑈)) |
29 | 5, 28 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ⊆ wss 3946 {csn 4623 ‘cfv 6546 (class class class)co 7416 Basecbs 17208 SubGrpcsubg 19110 LSSumclsm 19628 LModclmod 20832 LSubSpclss 20904 LSpanclspn 20944 LSHypclsh 38686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-2 12321 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-0g 17451 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-submnd 18769 df-grp 18926 df-minusg 18927 df-sbg 18928 df-subg 19113 df-lsm 19630 df-mgp 20114 df-ur 20161 df-ring 20214 df-lmod 20834 df-lss 20905 df-lsp 20945 df-lshyp 38688 |
This theorem is referenced by: lshpnelb 38695 lshpne0 38697 lshpdisj 38698 |
Copyright terms: Public domain | W3C validator |