| Step | Hyp | Ref
| Expression |
| 1 | | dochsatshpb.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
| 2 | | dochsatshpb.u |
. . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 3 | | dochsatshpb.o |
. . 3
⊢ ⊥ =
((ocH‘𝐾)‘𝑊) |
| 4 | | dochsatshpb.a |
. . 3
⊢ 𝐴 = (LSAtoms‘𝑈) |
| 5 | | dochsatshpb.y |
. . 3
⊢ 𝑌 = (LSHyp‘𝑈) |
| 6 | | dochsatshpb.k |
. . . 4
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 7 | 6 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑄 ∈ 𝐴) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 8 | | simpr 484 |
. . 3
⊢ ((𝜑 ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ 𝐴) |
| 9 | 1, 2, 3, 4, 5, 7, 8 | dochsatshp 41453 |
. 2
⊢ ((𝜑 ∧ 𝑄 ∈ 𝐴) → ( ⊥ ‘𝑄) ∈ 𝑌) |
| 10 | | dochsatshpb.q |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ 𝑆) |
| 11 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(Base‘𝑈) =
(Base‘𝑈) |
| 12 | | dochsatshpb.s |
. . . . . . . . . . . 12
⊢ 𝑆 = (LSubSp‘𝑈) |
| 13 | 11, 12 | lssss 20934 |
. . . . . . . . . . 11
⊢ (𝑄 ∈ 𝑆 → 𝑄 ⊆ (Base‘𝑈)) |
| 14 | 10, 13 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄 ⊆ (Base‘𝑈)) |
| 15 | | eqid 2737 |
. . . . . . . . . . 11
⊢
((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) |
| 16 | 1, 15, 2, 11, 3 | dochcl 41355 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ⊆ (Base‘𝑈)) → ( ⊥ ‘𝑄) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 17 | 6, 14, 16 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ( ⊥ ‘𝑄) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 18 | 1, 15, 3 | dochoc 41369 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑄) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑄))) = ( ⊥ ‘𝑄)) |
| 19 | 6, 17, 18 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑄))) = ( ⊥ ‘𝑄)) |
| 20 | 19 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑄))) = ( ⊥ ‘𝑄)) |
| 21 | 1, 2, 6 | dvhlmod 41112 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ LMod) |
| 22 | 21 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → 𝑈 ∈ LMod) |
| 23 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → ( ⊥ ‘𝑄) ∈ 𝑌) |
| 24 | 11, 5, 22, 23 | lshpne 38983 |
. . . . . . 7
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → ( ⊥ ‘𝑄) ≠ (Base‘𝑈)) |
| 25 | 20, 24 | eqnetrd 3008 |
. . . . . 6
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑄))) ≠ (Base‘𝑈)) |
| 26 | | eqid 2737 |
. . . . . . . 8
⊢
(0g‘𝑈) = (0g‘𝑈) |
| 27 | 1, 2, 11, 3 | dochssv 41357 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ⊆ (Base‘𝑈)) → ( ⊥ ‘𝑄) ⊆ (Base‘𝑈)) |
| 28 | 6, 14, 27 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ( ⊥ ‘𝑄) ⊆ (Base‘𝑈)) |
| 29 | 1, 3, 2, 11, 26, 6, 28 | dochn0nv 41377 |
. . . . . . 7
⊢ (𝜑 → (( ⊥ ‘( ⊥
‘𝑄)) ≠
{(0g‘𝑈)}
↔ ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑄))) ≠ (Base‘𝑈))) |
| 30 | 29 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → (( ⊥ ‘( ⊥
‘𝑄)) ≠
{(0g‘𝑈)}
↔ ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑄))) ≠ (Base‘𝑈))) |
| 31 | 25, 30 | mpbird 257 |
. . . . 5
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → ( ⊥ ‘( ⊥
‘𝑄)) ≠
{(0g‘𝑈)}) |
| 32 | 1, 2, 11, 12, 3 | dochlss 41356 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ⊆ (Base‘𝑈)) → ( ⊥ ‘𝑄) ∈ 𝑆) |
| 33 | 6, 14, 32 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ( ⊥ ‘𝑄) ∈ 𝑆) |
| 34 | 11, 12 | lssss 20934 |
. . . . . . . . 9
⊢ (( ⊥
‘𝑄) ∈ 𝑆 → ( ⊥ ‘𝑄) ⊆ (Base‘𝑈)) |
| 35 | 33, 34 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ( ⊥ ‘𝑄) ⊆ (Base‘𝑈)) |
| 36 | 1, 2, 11, 12, 3 | dochlss 41356 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑄) ⊆ (Base‘𝑈)) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝑆) |
| 37 | 6, 35, 36 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝑆) |
| 38 | 37 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝑆) |
| 39 | 26, 12 | lssne0 20949 |
. . . . . 6
⊢ (( ⊥
‘( ⊥ ‘𝑄)) ∈ 𝑆 → (( ⊥ ‘( ⊥
‘𝑄)) ≠
{(0g‘𝑈)}
↔ ∃𝑣 ∈ (
⊥
‘( ⊥ ‘𝑄))𝑣 ≠ (0g‘𝑈))) |
| 40 | 38, 39 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → (( ⊥ ‘( ⊥
‘𝑄)) ≠
{(0g‘𝑈)}
↔ ∃𝑣 ∈ (
⊥
‘( ⊥ ‘𝑄))𝑣 ≠ (0g‘𝑈))) |
| 41 | 31, 40 | mpbid 232 |
. . . 4
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → ∃𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄))𝑣 ≠ (0g‘𝑈)) |
| 42 | 6 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 43 | 42 | 3ad2ant1 1134 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 44 | 17 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → ( ⊥ ‘𝑄) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 45 | 44 | 3ad2ant1 1134 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘𝑄) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 46 | 43, 45, 18 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑄))) = ( ⊥ ‘𝑄)) |
| 47 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(LSpan‘𝑈) =
(LSpan‘𝑈) |
| 48 | 22 | 3ad2ant1 1134 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → 𝑈 ∈ LMod) |
| 49 | 38 | 3ad2ant1 1134 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝑆) |
| 50 | | simp2 1138 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄))) |
| 51 | 12, 47, 48, 49, 50 | ellspsn5 20994 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ((LSpan‘𝑈)‘{𝑣}) ⊆ ( ⊥ ‘( ⊥
‘𝑄))) |
| 52 | 11, 12 | lssel 20935 |
. . . . . . . . . . . . . 14
⊢ ((( ⊥
‘( ⊥ ‘𝑄)) ∈ 𝑆 ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄))) → 𝑣 ∈ (Base‘𝑈)) |
| 53 | 49, 50, 52 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → 𝑣 ∈ (Base‘𝑈)) |
| 54 | 1, 2, 11, 47, 15 | dihlsprn 41333 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑣 ∈ (Base‘𝑈)) → ((LSpan‘𝑈)‘{𝑣}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 55 | 43, 53, 54 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ((LSpan‘𝑈)‘{𝑣}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 56 | 1, 15, 2, 11, 3 | dochcl 41355 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑄) ⊆ (Base‘𝑈)) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ ran
((DIsoH‘𝐾)‘𝑊)) |
| 57 | 6, 35, 56 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘𝑄)) ∈ ran
((DIsoH‘𝐾)‘𝑊)) |
| 58 | 57 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ ran
((DIsoH‘𝐾)‘𝑊)) |
| 59 | 58 | 3ad2ant1 1134 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ ran
((DIsoH‘𝐾)‘𝑊)) |
| 60 | 1, 15, 3, 43, 55, 59 | dochord 41372 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → (((LSpan‘𝑈)‘{𝑣}) ⊆ ( ⊥ ‘( ⊥
‘𝑄)) ↔ ( ⊥
‘( ⊥ ‘( ⊥
‘𝑄))) ⊆ ( ⊥
‘((LSpan‘𝑈)‘{𝑣})))) |
| 61 | 51, 60 | mpbid 232 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑄))) ⊆ ( ⊥
‘((LSpan‘𝑈)‘{𝑣}))) |
| 62 | 46, 61 | eqsstrrd 4019 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘𝑄) ⊆ ( ⊥
‘((LSpan‘𝑈)‘{𝑣}))) |
| 63 | 1, 2, 6 | dvhlvec 41111 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ∈ LVec) |
| 64 | 63 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → 𝑈 ∈ LVec) |
| 65 | 64 | 3ad2ant1 1134 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → 𝑈 ∈ LVec) |
| 66 | | simp1r 1199 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘𝑄) ∈ 𝑌) |
| 67 | | simp3 1139 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → 𝑣 ≠ (0g‘𝑈)) |
| 68 | 11, 47, 26, 4 | lsatlspsn2 38993 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑈) ∧ 𝑣 ≠ (0g‘𝑈)) → ((LSpan‘𝑈)‘{𝑣}) ∈ 𝐴) |
| 69 | 48, 53, 67, 68 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ((LSpan‘𝑈)‘{𝑣}) ∈ 𝐴) |
| 70 | 1, 2, 3, 4, 5, 43,
69 | dochsatshp 41453 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥
‘((LSpan‘𝑈)‘{𝑣})) ∈ 𝑌) |
| 71 | 5, 65, 66, 70 | lshpcmp 38989 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → (( ⊥ ‘𝑄) ⊆ ( ⊥
‘((LSpan‘𝑈)‘{𝑣})) ↔ ( ⊥ ‘𝑄) = ( ⊥
‘((LSpan‘𝑈)‘{𝑣})))) |
| 72 | 62, 71 | mpbid 232 |
. . . . . . . 8
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘𝑄) = ( ⊥
‘((LSpan‘𝑈)‘{𝑣}))) |
| 73 | 72 | fveq2d 6910 |
. . . . . . 7
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘( ⊥
‘𝑄)) = ( ⊥
‘( ⊥
‘((LSpan‘𝑈)‘{𝑣})))) |
| 74 | 1, 15, 3 | dochoc 41369 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((LSpan‘𝑈)‘{𝑣}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘( ⊥
‘((LSpan‘𝑈)‘{𝑣}))) = ((LSpan‘𝑈)‘{𝑣})) |
| 75 | 43, 55, 74 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘( ⊥
‘((LSpan‘𝑈)‘{𝑣}))) = ((LSpan‘𝑈)‘{𝑣})) |
| 76 | 73, 75 | eqtrd 2777 |
. . . . . 6
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘( ⊥
‘𝑄)) =
((LSpan‘𝑈)‘{𝑣})) |
| 77 | 76, 69 | eqeltrd 2841 |
. . . . 5
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) |
| 78 | 77 | rexlimdv3a 3159 |
. . . 4
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → (∃𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄))𝑣 ≠ (0g‘𝑈) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴)) |
| 79 | 41, 78 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) |
| 80 | 10 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → 𝑄 ∈ 𝑆) |
| 81 | 1, 3, 2, 12, 4, 42, 80 | dochsat 41385 |
. . 3
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → (( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴 ↔ 𝑄 ∈ 𝐴)) |
| 82 | 79, 81 | mpbid 232 |
. 2
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → 𝑄 ∈ 𝐴) |
| 83 | 9, 82 | impbida 801 |
1
⊢ (𝜑 → (𝑄 ∈ 𝐴 ↔ ( ⊥ ‘𝑄) ∈ 𝑌)) |