Step | Hyp | Ref
| Expression |
1 | | dochsatshpb.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | dochsatshpb.u |
. . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
3 | | dochsatshpb.o |
. . 3
⊢ ⊥ =
((ocH‘𝐾)‘𝑊) |
4 | | dochsatshpb.a |
. . 3
⊢ 𝐴 = (LSAtoms‘𝑈) |
5 | | dochsatshpb.y |
. . 3
⊢ 𝑌 = (LSHyp‘𝑈) |
6 | | dochsatshpb.k |
. . . 4
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
7 | 6 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑄 ∈ 𝐴) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
8 | | simpr 484 |
. . 3
⊢ ((𝜑 ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ 𝐴) |
9 | 1, 2, 3, 4, 5, 7, 8 | dochsatshp 39392 |
. 2
⊢ ((𝜑 ∧ 𝑄 ∈ 𝐴) → ( ⊥ ‘𝑄) ∈ 𝑌) |
10 | | dochsatshpb.q |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ 𝑆) |
11 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Base‘𝑈) =
(Base‘𝑈) |
12 | | dochsatshpb.s |
. . . . . . . . . . . 12
⊢ 𝑆 = (LSubSp‘𝑈) |
13 | 11, 12 | lssss 20113 |
. . . . . . . . . . 11
⊢ (𝑄 ∈ 𝑆 → 𝑄 ⊆ (Base‘𝑈)) |
14 | 10, 13 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄 ⊆ (Base‘𝑈)) |
15 | | eqid 2738 |
. . . . . . . . . . 11
⊢
((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) |
16 | 1, 15, 2, 11, 3 | dochcl 39294 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ⊆ (Base‘𝑈)) → ( ⊥ ‘𝑄) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
17 | 6, 14, 16 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → ( ⊥ ‘𝑄) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
18 | 1, 15, 3 | dochoc 39308 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑄) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑄))) = ( ⊥ ‘𝑄)) |
19 | 6, 17, 18 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑄))) = ( ⊥ ‘𝑄)) |
20 | 19 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑄))) = ( ⊥ ‘𝑄)) |
21 | 1, 2, 6 | dvhlmod 39051 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ LMod) |
22 | 21 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → 𝑈 ∈ LMod) |
23 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → ( ⊥ ‘𝑄) ∈ 𝑌) |
24 | 11, 5, 22, 23 | lshpne 36923 |
. . . . . . 7
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → ( ⊥ ‘𝑄) ≠ (Base‘𝑈)) |
25 | 20, 24 | eqnetrd 3010 |
. . . . . 6
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑄))) ≠ (Base‘𝑈)) |
26 | | eqid 2738 |
. . . . . . . 8
⊢
(0g‘𝑈) = (0g‘𝑈) |
27 | 1, 2, 11, 3 | dochssv 39296 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ⊆ (Base‘𝑈)) → ( ⊥ ‘𝑄) ⊆ (Base‘𝑈)) |
28 | 6, 14, 27 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → ( ⊥ ‘𝑄) ⊆ (Base‘𝑈)) |
29 | 1, 3, 2, 11, 26, 6, 28 | dochn0nv 39316 |
. . . . . . 7
⊢ (𝜑 → (( ⊥ ‘( ⊥
‘𝑄)) ≠
{(0g‘𝑈)}
↔ ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑄))) ≠ (Base‘𝑈))) |
30 | 29 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → (( ⊥ ‘( ⊥
‘𝑄)) ≠
{(0g‘𝑈)}
↔ ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑄))) ≠ (Base‘𝑈))) |
31 | 25, 30 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → ( ⊥ ‘( ⊥
‘𝑄)) ≠
{(0g‘𝑈)}) |
32 | 1, 2, 11, 12, 3 | dochlss 39295 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ⊆ (Base‘𝑈)) → ( ⊥ ‘𝑄) ∈ 𝑆) |
33 | 6, 14, 32 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → ( ⊥ ‘𝑄) ∈ 𝑆) |
34 | 11, 12 | lssss 20113 |
. . . . . . . . 9
⊢ (( ⊥
‘𝑄) ∈ 𝑆 → ( ⊥ ‘𝑄) ⊆ (Base‘𝑈)) |
35 | 33, 34 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ( ⊥ ‘𝑄) ⊆ (Base‘𝑈)) |
36 | 1, 2, 11, 12, 3 | dochlss 39295 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑄) ⊆ (Base‘𝑈)) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝑆) |
37 | 6, 35, 36 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝑆) |
38 | 37 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝑆) |
39 | 26, 12 | lssne0 20127 |
. . . . . 6
⊢ (( ⊥
‘( ⊥ ‘𝑄)) ∈ 𝑆 → (( ⊥ ‘( ⊥
‘𝑄)) ≠
{(0g‘𝑈)}
↔ ∃𝑣 ∈ (
⊥
‘( ⊥ ‘𝑄))𝑣 ≠ (0g‘𝑈))) |
40 | 38, 39 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → (( ⊥ ‘( ⊥
‘𝑄)) ≠
{(0g‘𝑈)}
↔ ∃𝑣 ∈ (
⊥
‘( ⊥ ‘𝑄))𝑣 ≠ (0g‘𝑈))) |
41 | 31, 40 | mpbid 231 |
. . . 4
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → ∃𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄))𝑣 ≠ (0g‘𝑈)) |
42 | 6 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
43 | 42 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
44 | 17 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → ( ⊥ ‘𝑄) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
45 | 44 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘𝑄) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
46 | 43, 45, 18 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑄))) = ( ⊥ ‘𝑄)) |
47 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(LSpan‘𝑈) =
(LSpan‘𝑈) |
48 | 22 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → 𝑈 ∈ LMod) |
49 | 38 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝑆) |
50 | | simp2 1135 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄))) |
51 | 12, 47, 48, 49, 50 | lspsnel5a 20173 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ((LSpan‘𝑈)‘{𝑣}) ⊆ ( ⊥ ‘( ⊥
‘𝑄))) |
52 | 11, 12 | lssel 20114 |
. . . . . . . . . . . . . 14
⊢ ((( ⊥
‘( ⊥ ‘𝑄)) ∈ 𝑆 ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄))) → 𝑣 ∈ (Base‘𝑈)) |
53 | 49, 50, 52 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → 𝑣 ∈ (Base‘𝑈)) |
54 | 1, 2, 11, 47, 15 | dihlsprn 39272 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑣 ∈ (Base‘𝑈)) → ((LSpan‘𝑈)‘{𝑣}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
55 | 43, 53, 54 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ((LSpan‘𝑈)‘{𝑣}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
56 | 1, 15, 2, 11, 3 | dochcl 39294 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑄) ⊆ (Base‘𝑈)) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ ran
((DIsoH‘𝐾)‘𝑊)) |
57 | 6, 35, 56 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘𝑄)) ∈ ran
((DIsoH‘𝐾)‘𝑊)) |
58 | 57 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ ran
((DIsoH‘𝐾)‘𝑊)) |
59 | 58 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ ran
((DIsoH‘𝐾)‘𝑊)) |
60 | 1, 15, 3, 43, 55, 59 | dochord 39311 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → (((LSpan‘𝑈)‘{𝑣}) ⊆ ( ⊥ ‘( ⊥
‘𝑄)) ↔ ( ⊥
‘( ⊥ ‘( ⊥
‘𝑄))) ⊆ ( ⊥
‘((LSpan‘𝑈)‘{𝑣})))) |
61 | 51, 60 | mpbid 231 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘( ⊥
‘( ⊥ ‘𝑄))) ⊆ ( ⊥
‘((LSpan‘𝑈)‘{𝑣}))) |
62 | 46, 61 | eqsstrrd 3956 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘𝑄) ⊆ ( ⊥
‘((LSpan‘𝑈)‘{𝑣}))) |
63 | 1, 2, 6 | dvhlvec 39050 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ∈ LVec) |
64 | 63 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → 𝑈 ∈ LVec) |
65 | 64 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → 𝑈 ∈ LVec) |
66 | | simp1r 1196 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘𝑄) ∈ 𝑌) |
67 | | simp3 1136 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → 𝑣 ≠ (0g‘𝑈)) |
68 | 11, 47, 26, 4 | lsatlspsn2 36933 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑈) ∧ 𝑣 ≠ (0g‘𝑈)) → ((LSpan‘𝑈)‘{𝑣}) ∈ 𝐴) |
69 | 48, 53, 67, 68 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ((LSpan‘𝑈)‘{𝑣}) ∈ 𝐴) |
70 | 1, 2, 3, 4, 5, 43,
69 | dochsatshp 39392 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥
‘((LSpan‘𝑈)‘{𝑣})) ∈ 𝑌) |
71 | 5, 65, 66, 70 | lshpcmp 36929 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → (( ⊥ ‘𝑄) ⊆ ( ⊥
‘((LSpan‘𝑈)‘{𝑣})) ↔ ( ⊥ ‘𝑄) = ( ⊥
‘((LSpan‘𝑈)‘{𝑣})))) |
72 | 62, 71 | mpbid 231 |
. . . . . . . 8
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘𝑄) = ( ⊥
‘((LSpan‘𝑈)‘{𝑣}))) |
73 | 72 | fveq2d 6760 |
. . . . . . 7
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘( ⊥
‘𝑄)) = ( ⊥
‘( ⊥
‘((LSpan‘𝑈)‘{𝑣})))) |
74 | 1, 15, 3 | dochoc 39308 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((LSpan‘𝑈)‘{𝑣}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘( ⊥
‘((LSpan‘𝑈)‘{𝑣}))) = ((LSpan‘𝑈)‘{𝑣})) |
75 | 43, 55, 74 | syl2anc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘( ⊥
‘((LSpan‘𝑈)‘{𝑣}))) = ((LSpan‘𝑈)‘{𝑣})) |
76 | 73, 75 | eqtrd 2778 |
. . . . . 6
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘( ⊥
‘𝑄)) =
((LSpan‘𝑈)‘{𝑣})) |
77 | 76, 69 | eqeltrd 2839 |
. . . . 5
⊢ (((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) ∧ 𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄)) ∧ 𝑣 ≠ (0g‘𝑈)) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) |
78 | 77 | rexlimdv3a 3214 |
. . . 4
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → (∃𝑣 ∈ ( ⊥ ‘( ⊥
‘𝑄))𝑣 ≠ (0g‘𝑈) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴)) |
79 | 41, 78 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) |
80 | 10 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → 𝑄 ∈ 𝑆) |
81 | 1, 3, 2, 12, 4, 42, 80 | dochsat 39324 |
. . 3
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → (( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴 ↔ 𝑄 ∈ 𝐴)) |
82 | 79, 81 | mpbid 231 |
. 2
⊢ ((𝜑 ∧ ( ⊥ ‘𝑄) ∈ 𝑌) → 𝑄 ∈ 𝐴) |
83 | 9, 82 | impbida 797 |
1
⊢ (𝜑 → (𝑄 ∈ 𝐴 ↔ ( ⊥ ‘𝑄) ∈ 𝑌)) |