Step | Hyp | Ref
| Expression |
1 | | dochsatshpb.h |
. . 3
β’ π» = (LHypβπΎ) |
2 | | dochsatshpb.u |
. . 3
β’ π = ((DVecHβπΎ)βπ) |
3 | | dochsatshpb.o |
. . 3
β’ β₯ =
((ocHβπΎ)βπ) |
4 | | dochsatshpb.a |
. . 3
β’ π΄ = (LSAtomsβπ) |
5 | | dochsatshpb.y |
. . 3
β’ π = (LSHypβπ) |
6 | | dochsatshpb.k |
. . . 4
β’ (π β (πΎ β HL β§ π β π»)) |
7 | 6 | adantr 481 |
. . 3
β’ ((π β§ π β π΄) β (πΎ β HL β§ π β π»)) |
8 | | simpr 485 |
. . 3
β’ ((π β§ π β π΄) β π β π΄) |
9 | 1, 2, 3, 4, 5, 7, 8 | dochsatshp 40310 |
. 2
β’ ((π β§ π β π΄) β ( β₯ βπ) β π) |
10 | | dochsatshpb.q |
. . . . . . . . . . 11
β’ (π β π β π) |
11 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(Baseβπ) =
(Baseβπ) |
12 | | dochsatshpb.s |
. . . . . . . . . . . 12
β’ π = (LSubSpβπ) |
13 | 11, 12 | lssss 20539 |
. . . . . . . . . . 11
β’ (π β π β π β (Baseβπ)) |
14 | 10, 13 | syl 17 |
. . . . . . . . . 10
β’ (π β π β (Baseβπ)) |
15 | | eqid 2732 |
. . . . . . . . . . 11
β’
((DIsoHβπΎ)βπ) = ((DIsoHβπΎ)βπ) |
16 | 1, 15, 2, 11, 3 | dochcl 40212 |
. . . . . . . . . 10
β’ (((πΎ β HL β§ π β π») β§ π β (Baseβπ)) β ( β₯ βπ) β ran ((DIsoHβπΎ)βπ)) |
17 | 6, 14, 16 | syl2anc 584 |
. . . . . . . . 9
β’ (π β ( β₯ βπ) β ran ((DIsoHβπΎ)βπ)) |
18 | 1, 15, 3 | dochoc 40226 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π») β§ ( β₯ βπ) β ran ((DIsoHβπΎ)βπ)) β ( β₯ β( β₯
β( β₯ βπ))) = ( β₯ βπ)) |
19 | 6, 17, 18 | syl2anc 584 |
. . . . . . . 8
β’ (π β ( β₯ β( β₯
β( β₯ βπ))) = ( β₯ βπ)) |
20 | 19 | adantr 481 |
. . . . . . 7
β’ ((π β§ ( β₯ βπ) β π) β ( β₯ β( β₯
β( β₯ βπ))) = ( β₯ βπ)) |
21 | 1, 2, 6 | dvhlmod 39969 |
. . . . . . . . 9
β’ (π β π β LMod) |
22 | 21 | adantr 481 |
. . . . . . . 8
β’ ((π β§ ( β₯ βπ) β π) β π β LMod) |
23 | | simpr 485 |
. . . . . . . 8
β’ ((π β§ ( β₯ βπ) β π) β ( β₯ βπ) β π) |
24 | 11, 5, 22, 23 | lshpne 37840 |
. . . . . . 7
β’ ((π β§ ( β₯ βπ) β π) β ( β₯ βπ) β (Baseβπ)) |
25 | 20, 24 | eqnetrd 3008 |
. . . . . 6
β’ ((π β§ ( β₯ βπ) β π) β ( β₯ β( β₯
β( β₯ βπ))) β (Baseβπ)) |
26 | | eqid 2732 |
. . . . . . . 8
β’
(0gβπ) = (0gβπ) |
27 | 1, 2, 11, 3 | dochssv 40214 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π») β§ π β (Baseβπ)) β ( β₯ βπ) β (Baseβπ)) |
28 | 6, 14, 27 | syl2anc 584 |
. . . . . . . 8
β’ (π β ( β₯ βπ) β (Baseβπ)) |
29 | 1, 3, 2, 11, 26, 6, 28 | dochn0nv 40234 |
. . . . . . 7
β’ (π β (( β₯ β( β₯
βπ)) β
{(0gβπ)}
β ( β₯ β( β₯
β( β₯ βπ))) β (Baseβπ))) |
30 | 29 | adantr 481 |
. . . . . 6
β’ ((π β§ ( β₯ βπ) β π) β (( β₯ β( β₯
βπ)) β
{(0gβπ)}
β ( β₯ β( β₯
β( β₯ βπ))) β (Baseβπ))) |
31 | 25, 30 | mpbird 256 |
. . . . 5
β’ ((π β§ ( β₯ βπ) β π) β ( β₯ β( β₯
βπ)) β
{(0gβπ)}) |
32 | 1, 2, 11, 12, 3 | dochlss 40213 |
. . . . . . . . . 10
β’ (((πΎ β HL β§ π β π») β§ π β (Baseβπ)) β ( β₯ βπ) β π) |
33 | 6, 14, 32 | syl2anc 584 |
. . . . . . . . 9
β’ (π β ( β₯ βπ) β π) |
34 | 11, 12 | lssss 20539 |
. . . . . . . . 9
β’ (( β₯
βπ) β π β ( β₯ βπ) β (Baseβπ)) |
35 | 33, 34 | syl 17 |
. . . . . . . 8
β’ (π β ( β₯ βπ) β (Baseβπ)) |
36 | 1, 2, 11, 12, 3 | dochlss 40213 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ ( β₯ βπ) β (Baseβπ)) β ( β₯ β( β₯
βπ)) β π) |
37 | 6, 35, 36 | syl2anc 584 |
. . . . . . 7
β’ (π β ( β₯ β( β₯
βπ)) β π) |
38 | 37 | adantr 481 |
. . . . . 6
β’ ((π β§ ( β₯ βπ) β π) β ( β₯ β( β₯
βπ)) β π) |
39 | 26, 12 | lssne0 20553 |
. . . . . 6
β’ (( β₯
β( β₯ βπ)) β π β (( β₯ β( β₯
βπ)) β
{(0gβπ)}
β βπ£ β (
β₯
β( β₯ βπ))π£ β (0gβπ))) |
40 | 38, 39 | syl 17 |
. . . . 5
β’ ((π β§ ( β₯ βπ) β π) β (( β₯ β( β₯
βπ)) β
{(0gβπ)}
β βπ£ β (
β₯
β( β₯ βπ))π£ β (0gβπ))) |
41 | 31, 40 | mpbid 231 |
. . . 4
β’ ((π β§ ( β₯ βπ) β π) β βπ£ β ( β₯ β( β₯
βπ))π£ β (0gβπ)) |
42 | 6 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ ( β₯ βπ) β π) β (πΎ β HL β§ π β π»)) |
43 | 42 | 3ad2ant1 1133 |
. . . . . . . . . . 11
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β (πΎ β HL β§ π β π»)) |
44 | 17 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ ( β₯ βπ) β π) β ( β₯ βπ) β ran ((DIsoHβπΎ)βπ)) |
45 | 44 | 3ad2ant1 1133 |
. . . . . . . . . . 11
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β ( β₯ βπ) β ran ((DIsoHβπΎ)βπ)) |
46 | 43, 45, 18 | syl2anc 584 |
. . . . . . . . . 10
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β ( β₯ β( β₯
β( β₯ βπ))) = ( β₯ βπ)) |
47 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(LSpanβπ) =
(LSpanβπ) |
48 | 22 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β π β LMod) |
49 | 38 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β ( β₯ β( β₯
βπ)) β π) |
50 | | simp2 1137 |
. . . . . . . . . . . 12
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β π£ β ( β₯ β( β₯
βπ))) |
51 | 12, 47, 48, 49, 50 | lspsnel5a 20599 |
. . . . . . . . . . 11
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β ((LSpanβπ)β{π£}) β ( β₯ β( β₯
βπ))) |
52 | 11, 12 | lssel 20540 |
. . . . . . . . . . . . . 14
β’ ((( β₯
β( β₯ βπ)) β π β§ π£ β ( β₯ β( β₯
βπ))) β π£ β (Baseβπ)) |
53 | 49, 50, 52 | syl2anc 584 |
. . . . . . . . . . . . 13
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β π£ β (Baseβπ)) |
54 | 1, 2, 11, 47, 15 | dihlsprn 40190 |
. . . . . . . . . . . . 13
β’ (((πΎ β HL β§ π β π») β§ π£ β (Baseβπ)) β ((LSpanβπ)β{π£}) β ran ((DIsoHβπΎ)βπ)) |
55 | 43, 53, 54 | syl2anc 584 |
. . . . . . . . . . . 12
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β ((LSpanβπ)β{π£}) β ran ((DIsoHβπΎ)βπ)) |
56 | 1, 15, 2, 11, 3 | dochcl 40212 |
. . . . . . . . . . . . . . 15
β’ (((πΎ β HL β§ π β π») β§ ( β₯ βπ) β (Baseβπ)) β ( β₯ β( β₯
βπ)) β ran
((DIsoHβπΎ)βπ)) |
57 | 6, 35, 56 | syl2anc 584 |
. . . . . . . . . . . . . 14
β’ (π β ( β₯ β( β₯
βπ)) β ran
((DIsoHβπΎ)βπ)) |
58 | 57 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((π β§ ( β₯ βπ) β π) β ( β₯ β( β₯
βπ)) β ran
((DIsoHβπΎ)βπ)) |
59 | 58 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β ( β₯ β( β₯
βπ)) β ran
((DIsoHβπΎ)βπ)) |
60 | 1, 15, 3, 43, 55, 59 | dochord 40229 |
. . . . . . . . . . 11
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β (((LSpanβπ)β{π£}) β ( β₯ β( β₯
βπ)) β ( β₯
β( β₯ β( β₯
βπ))) β ( β₯
β((LSpanβπ)β{π£})))) |
61 | 51, 60 | mpbid 231 |
. . . . . . . . . 10
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β ( β₯ β( β₯
β( β₯ βπ))) β ( β₯
β((LSpanβπ)β{π£}))) |
62 | 46, 61 | eqsstrrd 4020 |
. . . . . . . . 9
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β ( β₯ βπ) β ( β₯
β((LSpanβπ)β{π£}))) |
63 | 1, 2, 6 | dvhlvec 39968 |
. . . . . . . . . . . 12
β’ (π β π β LVec) |
64 | 63 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ ( β₯ βπ) β π) β π β LVec) |
65 | 64 | 3ad2ant1 1133 |
. . . . . . . . . 10
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β π β LVec) |
66 | | simp1r 1198 |
. . . . . . . . . 10
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β ( β₯ βπ) β π) |
67 | | simp3 1138 |
. . . . . . . . . . . 12
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β π£ β (0gβπ)) |
68 | 11, 47, 26, 4 | lsatlspsn2 37850 |
. . . . . . . . . . . 12
β’ ((π β LMod β§ π£ β (Baseβπ) β§ π£ β (0gβπ)) β ((LSpanβπ)β{π£}) β π΄) |
69 | 48, 53, 67, 68 | syl3anc 1371 |
. . . . . . . . . . 11
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β ((LSpanβπ)β{π£}) β π΄) |
70 | 1, 2, 3, 4, 5, 43,
69 | dochsatshp 40310 |
. . . . . . . . . 10
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β ( β₯
β((LSpanβπ)β{π£})) β π) |
71 | 5, 65, 66, 70 | lshpcmp 37846 |
. . . . . . . . 9
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β (( β₯ βπ) β ( β₯
β((LSpanβπ)β{π£})) β ( β₯ βπ) = ( β₯
β((LSpanβπ)β{π£})))) |
72 | 62, 71 | mpbid 231 |
. . . . . . . 8
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β ( β₯ βπ) = ( β₯
β((LSpanβπ)β{π£}))) |
73 | 72 | fveq2d 6892 |
. . . . . . 7
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β ( β₯ β( β₯
βπ)) = ( β₯
β( β₯
β((LSpanβπ)β{π£})))) |
74 | 1, 15, 3 | dochoc 40226 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ ((LSpanβπ)β{π£}) β ran ((DIsoHβπΎ)βπ)) β ( β₯ β( β₯
β((LSpanβπ)β{π£}))) = ((LSpanβπ)β{π£})) |
75 | 43, 55, 74 | syl2anc 584 |
. . . . . . 7
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β ( β₯ β( β₯
β((LSpanβπ)β{π£}))) = ((LSpanβπ)β{π£})) |
76 | 73, 75 | eqtrd 2772 |
. . . . . 6
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β ( β₯ β( β₯
βπ)) =
((LSpanβπ)β{π£})) |
77 | 76, 69 | eqeltrd 2833 |
. . . . 5
β’ (((π β§ ( β₯ βπ) β π) β§ π£ β ( β₯ β( β₯
βπ)) β§ π£ β (0gβπ)) β ( β₯ β( β₯
βπ)) β π΄) |
78 | 77 | rexlimdv3a 3159 |
. . . 4
β’ ((π β§ ( β₯ βπ) β π) β (βπ£ β ( β₯ β( β₯
βπ))π£ β (0gβπ) β ( β₯ β( β₯
βπ)) β π΄)) |
79 | 41, 78 | mpd 15 |
. . 3
β’ ((π β§ ( β₯ βπ) β π) β ( β₯ β( β₯
βπ)) β π΄) |
80 | 10 | adantr 481 |
. . . 4
β’ ((π β§ ( β₯ βπ) β π) β π β π) |
81 | 1, 3, 2, 12, 4, 42, 80 | dochsat 40242 |
. . 3
β’ ((π β§ ( β₯ βπ) β π) β (( β₯ β( β₯
βπ)) β π΄ β π β π΄)) |
82 | 79, 81 | mpbid 231 |
. 2
β’ ((π β§ ( β₯ βπ) β π) β π β π΄) |
83 | 9, 82 | impbida 799 |
1
β’ (π β (π β π΄ β ( β₯ βπ) β π)) |