| Step | Hyp | Ref
| Expression |
| 1 | | dochshpncl.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑌) |
| 2 | | dochshpncl.v |
. . . . . . 7
⊢ 𝑉 = (Base‘𝑈) |
| 3 | | eqid 2736 |
. . . . . . 7
⊢
(LSpan‘𝑈) =
(LSpan‘𝑈) |
| 4 | | eqid 2736 |
. . . . . . 7
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
| 5 | | eqid 2736 |
. . . . . . 7
⊢
(LSSum‘𝑈) =
(LSSum‘𝑈) |
| 6 | | dochshpncl.y |
. . . . . . 7
⊢ 𝑌 = (LSHyp‘𝑈) |
| 7 | | dochshpncl.h |
. . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) |
| 8 | | dochshpncl.u |
. . . . . . . 8
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 9 | | dochshpncl.k |
. . . . . . . 8
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 10 | 7, 8, 9 | dvhlmod 41134 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ LMod) |
| 11 | 2, 3, 4, 5, 6, 10 | islshpsm 39003 |
. . . . . 6
⊢ (𝜑 → (𝑋 ∈ 𝑌 ↔ (𝑋 ∈ (LSubSp‘𝑈) ∧ 𝑋 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉))) |
| 12 | 1, 11 | mpbid 232 |
. . . . 5
⊢ (𝜑 → (𝑋 ∈ (LSubSp‘𝑈) ∧ 𝑋 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉)) |
| 13 | 12 | simp3d 1144 |
. . . 4
⊢ (𝜑 → ∃𝑣 ∈ 𝑉 (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) |
| 14 | 13 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) → ∃𝑣 ∈ 𝑉 (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) |
| 15 | | id 22 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝜑 ∧ 𝑣 ∈ 𝑉)) |
| 16 | 15 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) ∧ 𝑣 ∈ 𝑉) → (𝜑 ∧ 𝑣 ∈ 𝑉)) |
| 17 | 16 | 3adant3 1132 |
. . . . . 6
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) ∧ 𝑣 ∈ 𝑉 ∧ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) → (𝜑 ∧ 𝑣 ∈ 𝑉)) |
| 18 | 4, 6, 10, 1 | lshplss 39004 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ (LSubSp‘𝑈)) |
| 19 | 2, 4 | lssss 20898 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ (LSubSp‘𝑈) → 𝑋 ⊆ 𝑉) |
| 20 | 18, 19 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ⊆ 𝑉) |
| 21 | | dochshpncl.o |
. . . . . . . . . . 11
⊢ ⊥ =
((ocH‘𝐾)‘𝑊) |
| 22 | 7, 8, 2, 21 | dochocss 41390 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → 𝑋 ⊆ ( ⊥ ‘( ⊥
‘𝑋))) |
| 23 | 9, 20, 22 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ⊆ ( ⊥ ‘( ⊥
‘𝑋))) |
| 24 | 23 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) → 𝑋 ⊆ ( ⊥ ‘( ⊥
‘𝑋))) |
| 25 | 24 | 3ad2ant1 1133 |
. . . . . . 7
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) ∧ 𝑣 ∈ 𝑉 ∧ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) → 𝑋 ⊆ ( ⊥ ‘( ⊥
‘𝑋))) |
| 26 | | simp1r 1199 |
. . . . . . . 8
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) ∧ 𝑣 ∈ 𝑉 ∧ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) → ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) |
| 27 | 26 | necomd 2988 |
. . . . . . 7
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) ∧ 𝑣 ∈ 𝑉 ∧ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) → 𝑋 ≠ ( ⊥ ‘( ⊥
‘𝑋))) |
| 28 | | df-pss 3951 |
. . . . . . 7
⊢ (𝑋 ⊊ ( ⊥ ‘( ⊥
‘𝑋)) ↔ (𝑋 ⊆ ( ⊥ ‘( ⊥
‘𝑋)) ∧ 𝑋 ≠ ( ⊥ ‘( ⊥
‘𝑋)))) |
| 29 | 25, 27, 28 | sylanbrc 583 |
. . . . . 6
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) ∧ 𝑣 ∈ 𝑉 ∧ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) → 𝑋 ⊊ ( ⊥ ‘( ⊥
‘𝑋))) |
| 30 | 7, 8, 2, 21 | dochssv 41379 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) ⊆ 𝑉) |
| 31 | 9, 20, 30 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → ( ⊥ ‘𝑋) ⊆ 𝑉) |
| 32 | 7, 8, 2, 21 | dochssv 41379 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑋) ⊆ 𝑉) → ( ⊥ ‘( ⊥
‘𝑋)) ⊆ 𝑉) |
| 33 | 9, 31, 32 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘𝑋)) ⊆ 𝑉) |
| 34 | 33 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) → ( ⊥ ‘( ⊥
‘𝑋)) ⊆ 𝑉) |
| 35 | 34 | 3ad2ant1 1133 |
. . . . . . 7
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) ∧ 𝑣 ∈ 𝑉 ∧ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) → ( ⊥ ‘( ⊥
‘𝑋)) ⊆ 𝑉) |
| 36 | | simp3 1138 |
. . . . . . 7
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) ∧ 𝑣 ∈ 𝑉 ∧ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) → (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) |
| 37 | 35, 36 | sseqtrrd 4001 |
. . . . . 6
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) ∧ 𝑣 ∈ 𝑉 ∧ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) → ( ⊥ ‘( ⊥
‘𝑋)) ⊆ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣}))) |
| 38 | 9 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 39 | 7, 8, 38 | dvhlvec 41133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑈 ∈ LVec) |
| 40 | 18 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑋 ∈ (LSubSp‘𝑈)) |
| 41 | 7, 8, 2, 4, 21 | dochlss 41378 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑋) ⊆ 𝑉) → ( ⊥ ‘( ⊥
‘𝑋)) ∈
(LSubSp‘𝑈)) |
| 42 | 9, 31, 41 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘𝑋)) ∈
(LSubSp‘𝑈)) |
| 43 | 42 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → ( ⊥ ‘( ⊥
‘𝑋)) ∈
(LSubSp‘𝑈)) |
| 44 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) |
| 45 | 2, 4, 3, 5, 39, 40, 43, 44 | lsmcv 21107 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ 𝑋 ⊊ ( ⊥ ‘( ⊥
‘𝑋)) ∧ ( ⊥
‘( ⊥ ‘𝑋)) ⊆ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣}))) → ( ⊥ ‘( ⊥
‘𝑋)) = (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣}))) |
| 46 | 17, 29, 37, 45 | syl3anc 1373 |
. . . . 5
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) ∧ 𝑣 ∈ 𝑉 ∧ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) → ( ⊥ ‘( ⊥
‘𝑋)) = (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣}))) |
| 47 | 46, 36 | eqtrd 2771 |
. . . 4
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) ∧ 𝑣 ∈ 𝑉 ∧ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) → ( ⊥ ‘( ⊥
‘𝑋)) = 𝑉) |
| 48 | 47 | rexlimdv3a 3146 |
. . 3
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) → (∃𝑣 ∈ 𝑉 (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉 → ( ⊥ ‘( ⊥
‘𝑋)) = 𝑉)) |
| 49 | 14, 48 | mpd 15 |
. 2
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) → ( ⊥ ‘( ⊥
‘𝑋)) = 𝑉) |
| 50 | | simpr 484 |
. . 3
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑉) → ( ⊥ ‘( ⊥
‘𝑋)) = 𝑉) |
| 51 | 2, 6, 10, 1 | lshpne 39005 |
. . . . 5
⊢ (𝜑 → 𝑋 ≠ 𝑉) |
| 52 | 51 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑉) → 𝑋 ≠ 𝑉) |
| 53 | 52 | necomd 2988 |
. . 3
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑉) → 𝑉 ≠ 𝑋) |
| 54 | 50, 53 | eqnetrd 3000 |
. 2
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑉) → ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) |
| 55 | 49, 54 | impbida 800 |
1
⊢ (𝜑 → (( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋 ↔ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑉)) |