Step | Hyp | Ref
| Expression |
1 | | dochshpncl.x |
. . . . . 6
β’ (π β π β π) |
2 | | dochshpncl.v |
. . . . . . 7
β’ π = (Baseβπ) |
3 | | eqid 2724 |
. . . . . . 7
β’
(LSpanβπ) =
(LSpanβπ) |
4 | | eqid 2724 |
. . . . . . 7
β’
(LSubSpβπ) =
(LSubSpβπ) |
5 | | eqid 2724 |
. . . . . . 7
β’
(LSSumβπ) =
(LSSumβπ) |
6 | | dochshpncl.y |
. . . . . . 7
β’ π = (LSHypβπ) |
7 | | dochshpncl.h |
. . . . . . . 8
β’ π» = (LHypβπΎ) |
8 | | dochshpncl.u |
. . . . . . . 8
β’ π = ((DVecHβπΎ)βπ) |
9 | | dochshpncl.k |
. . . . . . . 8
β’ (π β (πΎ β HL β§ π β π»)) |
10 | 7, 8, 9 | dvhlmod 40471 |
. . . . . . 7
β’ (π β π β LMod) |
11 | 2, 3, 4, 5, 6, 10 | islshpsm 38340 |
. . . . . 6
β’ (π β (π β π β (π β (LSubSpβπ) β§ π β π β§ βπ£ β π (π(LSSumβπ)((LSpanβπ)β{π£})) = π))) |
12 | 1, 11 | mpbid 231 |
. . . . 5
β’ (π β (π β (LSubSpβπ) β§ π β π β§ βπ£ β π (π(LSSumβπ)((LSpanβπ)β{π£})) = π)) |
13 | 12 | simp3d 1141 |
. . . 4
β’ (π β βπ£ β π (π(LSSumβπ)((LSpanβπ)β{π£})) = π) |
14 | 13 | adantr 480 |
. . 3
β’ ((π β§ ( β₯ β( β₯
βπ)) β π) β βπ£ β π (π(LSSumβπ)((LSpanβπ)β{π£})) = π) |
15 | | id 22 |
. . . . . . . 8
β’ ((π β§ π£ β π) β (π β§ π£ β π)) |
16 | 15 | adantlr 712 |
. . . . . . 7
β’ (((π β§ ( β₯ β( β₯
βπ)) β π) β§ π£ β π) β (π β§ π£ β π)) |
17 | 16 | 3adant3 1129 |
. . . . . 6
β’ (((π β§ ( β₯ β( β₯
βπ)) β π) β§ π£ β π β§ (π(LSSumβπ)((LSpanβπ)β{π£})) = π) β (π β§ π£ β π)) |
18 | 4, 6, 10, 1 | lshplss 38341 |
. . . . . . . . . . 11
β’ (π β π β (LSubSpβπ)) |
19 | 2, 4 | lssss 20773 |
. . . . . . . . . . 11
β’ (π β (LSubSpβπ) β π β π) |
20 | 18, 19 | syl 17 |
. . . . . . . . . 10
β’ (π β π β π) |
21 | | dochshpncl.o |
. . . . . . . . . . 11
β’ β₯ =
((ocHβπΎ)βπ) |
22 | 7, 8, 2, 21 | dochocss 40727 |
. . . . . . . . . 10
β’ (((πΎ β HL β§ π β π») β§ π β π) β π β ( β₯ β( β₯
βπ))) |
23 | 9, 20, 22 | syl2anc 583 |
. . . . . . . . 9
β’ (π β π β ( β₯ β( β₯
βπ))) |
24 | 23 | adantr 480 |
. . . . . . . 8
β’ ((π β§ ( β₯ β( β₯
βπ)) β π) β π β ( β₯ β( β₯
βπ))) |
25 | 24 | 3ad2ant1 1130 |
. . . . . . 7
β’ (((π β§ ( β₯ β( β₯
βπ)) β π) β§ π£ β π β§ (π(LSSumβπ)((LSpanβπ)β{π£})) = π) β π β ( β₯ β( β₯
βπ))) |
26 | | simp1r 1195 |
. . . . . . . 8
β’ (((π β§ ( β₯ β( β₯
βπ)) β π) β§ π£ β π β§ (π(LSSumβπ)((LSpanβπ)β{π£})) = π) β ( β₯ β( β₯
βπ)) β π) |
27 | 26 | necomd 2988 |
. . . . . . 7
β’ (((π β§ ( β₯ β( β₯
βπ)) β π) β§ π£ β π β§ (π(LSSumβπ)((LSpanβπ)β{π£})) = π) β π β ( β₯ β( β₯
βπ))) |
28 | | df-pss 3959 |
. . . . . . 7
β’ (π β ( β₯ β( β₯
βπ)) β (π β ( β₯ β( β₯
βπ)) β§ π β ( β₯ β( β₯
βπ)))) |
29 | 25, 27, 28 | sylanbrc 582 |
. . . . . 6
β’ (((π β§ ( β₯ β( β₯
βπ)) β π) β§ π£ β π β§ (π(LSSumβπ)((LSpanβπ)β{π£})) = π) β π β ( β₯ β( β₯
βπ))) |
30 | 7, 8, 2, 21 | dochssv 40716 |
. . . . . . . . . . 11
β’ (((πΎ β HL β§ π β π») β§ π β π) β ( β₯ βπ) β π) |
31 | 9, 20, 30 | syl2anc 583 |
. . . . . . . . . 10
β’ (π β ( β₯ βπ) β π) |
32 | 7, 8, 2, 21 | dochssv 40716 |
. . . . . . . . . 10
β’ (((πΎ β HL β§ π β π») β§ ( β₯ βπ) β π) β ( β₯ β( β₯
βπ)) β π) |
33 | 9, 31, 32 | syl2anc 583 |
. . . . . . . . 9
β’ (π β ( β₯ β( β₯
βπ)) β π) |
34 | 33 | adantr 480 |
. . . . . . . 8
β’ ((π β§ ( β₯ β( β₯
βπ)) β π) β ( β₯ β( β₯
βπ)) β π) |
35 | 34 | 3ad2ant1 1130 |
. . . . . . 7
β’ (((π β§ ( β₯ β( β₯
βπ)) β π) β§ π£ β π β§ (π(LSSumβπ)((LSpanβπ)β{π£})) = π) β ( β₯ β( β₯
βπ)) β π) |
36 | | simp3 1135 |
. . . . . . 7
β’ (((π β§ ( β₯ β( β₯
βπ)) β π) β§ π£ β π β§ (π(LSSumβπ)((LSpanβπ)β{π£})) = π) β (π(LSSumβπ)((LSpanβπ)β{π£})) = π) |
37 | 35, 36 | sseqtrrd 4015 |
. . . . . 6
β’ (((π β§ ( β₯ β( β₯
βπ)) β π) β§ π£ β π β§ (π(LSSumβπ)((LSpanβπ)β{π£})) = π) β ( β₯ β( β₯
βπ)) β (π(LSSumβπ)((LSpanβπ)β{π£}))) |
38 | 9 | adantr 480 |
. . . . . . . 8
β’ ((π β§ π£ β π) β (πΎ β HL β§ π β π»)) |
39 | 7, 8, 38 | dvhlvec 40470 |
. . . . . . 7
β’ ((π β§ π£ β π) β π β LVec) |
40 | 18 | adantr 480 |
. . . . . . 7
β’ ((π β§ π£ β π) β π β (LSubSpβπ)) |
41 | 7, 8, 2, 4, 21 | dochlss 40715 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π») β§ ( β₯ βπ) β π) β ( β₯ β( β₯
βπ)) β
(LSubSpβπ)) |
42 | 9, 31, 41 | syl2anc 583 |
. . . . . . . 8
β’ (π β ( β₯ β( β₯
βπ)) β
(LSubSpβπ)) |
43 | 42 | adantr 480 |
. . . . . . 7
β’ ((π β§ π£ β π) β ( β₯ β( β₯
βπ)) β
(LSubSpβπ)) |
44 | | simpr 484 |
. . . . . . 7
β’ ((π β§ π£ β π) β π£ β π) |
45 | 2, 4, 3, 5, 39, 40, 43, 44 | lsmcv 20982 |
. . . . . 6
β’ (((π β§ π£ β π) β§ π β ( β₯ β( β₯
βπ)) β§ ( β₯
β( β₯ βπ)) β (π(LSSumβπ)((LSpanβπ)β{π£}))) β ( β₯ β( β₯
βπ)) = (π(LSSumβπ)((LSpanβπ)β{π£}))) |
46 | 17, 29, 37, 45 | syl3anc 1368 |
. . . . 5
β’ (((π β§ ( β₯ β( β₯
βπ)) β π) β§ π£ β π β§ (π(LSSumβπ)((LSpanβπ)β{π£})) = π) β ( β₯ β( β₯
βπ)) = (π(LSSumβπ)((LSpanβπ)β{π£}))) |
47 | 46, 36 | eqtrd 2764 |
. . . 4
β’ (((π β§ ( β₯ β( β₯
βπ)) β π) β§ π£ β π β§ (π(LSSumβπ)((LSpanβπ)β{π£})) = π) β ( β₯ β( β₯
βπ)) = π) |
48 | 47 | rexlimdv3a 3151 |
. . 3
β’ ((π β§ ( β₯ β( β₯
βπ)) β π) β (βπ£ β π (π(LSSumβπ)((LSpanβπ)β{π£})) = π β ( β₯ β( β₯
βπ)) = π)) |
49 | 14, 48 | mpd 15 |
. 2
β’ ((π β§ ( β₯ β( β₯
βπ)) β π) β ( β₯ β( β₯
βπ)) = π) |
50 | | simpr 484 |
. . 3
β’ ((π β§ ( β₯ β( β₯
βπ)) = π) β ( β₯ β( β₯
βπ)) = π) |
51 | 2, 6, 10, 1 | lshpne 38342 |
. . . . 5
β’ (π β π β π) |
52 | 51 | adantr 480 |
. . . 4
β’ ((π β§ ( β₯ β( β₯
βπ)) = π) β π β π) |
53 | 52 | necomd 2988 |
. . 3
β’ ((π β§ ( β₯ β( β₯
βπ)) = π) β π β π) |
54 | 50, 53 | eqnetrd 3000 |
. 2
β’ ((π β§ ( β₯ β( β₯
βπ)) = π) β ( β₯ β( β₯
βπ)) β π) |
55 | 49, 54 | impbida 798 |
1
β’ (π β (( β₯ β( β₯
βπ)) β π β ( β₯ β( β₯
βπ)) = π)) |