| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dochshpncl.x | . . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑌) | 
| 2 |  | dochshpncl.v | . . . . . . 7
⊢ 𝑉 = (Base‘𝑈) | 
| 3 |  | eqid 2737 | . . . . . . 7
⊢
(LSpan‘𝑈) =
(LSpan‘𝑈) | 
| 4 |  | eqid 2737 | . . . . . . 7
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) | 
| 5 |  | eqid 2737 | . . . . . . 7
⊢
(LSSum‘𝑈) =
(LSSum‘𝑈) | 
| 6 |  | dochshpncl.y | . . . . . . 7
⊢ 𝑌 = (LSHyp‘𝑈) | 
| 7 |  | dochshpncl.h | . . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) | 
| 8 |  | dochshpncl.u | . . . . . . . 8
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| 9 |  | dochshpncl.k | . . . . . . . 8
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 10 | 7, 8, 9 | dvhlmod 41112 | . . . . . . 7
⊢ (𝜑 → 𝑈 ∈ LMod) | 
| 11 | 2, 3, 4, 5, 6, 10 | islshpsm 38981 | . . . . . 6
⊢ (𝜑 → (𝑋 ∈ 𝑌 ↔ (𝑋 ∈ (LSubSp‘𝑈) ∧ 𝑋 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉))) | 
| 12 | 1, 11 | mpbid 232 | . . . . 5
⊢ (𝜑 → (𝑋 ∈ (LSubSp‘𝑈) ∧ 𝑋 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉)) | 
| 13 | 12 | simp3d 1145 | . . . 4
⊢ (𝜑 → ∃𝑣 ∈ 𝑉 (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) | 
| 14 | 13 | adantr 480 | . . 3
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) → ∃𝑣 ∈ 𝑉 (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) | 
| 15 |  | id 22 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝜑 ∧ 𝑣 ∈ 𝑉)) | 
| 16 | 15 | adantlr 715 | . . . . . . 7
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) ∧ 𝑣 ∈ 𝑉) → (𝜑 ∧ 𝑣 ∈ 𝑉)) | 
| 17 | 16 | 3adant3 1133 | . . . . . 6
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) ∧ 𝑣 ∈ 𝑉 ∧ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) → (𝜑 ∧ 𝑣 ∈ 𝑉)) | 
| 18 | 4, 6, 10, 1 | lshplss 38982 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ (LSubSp‘𝑈)) | 
| 19 | 2, 4 | lssss 20934 | . . . . . . . . . . 11
⊢ (𝑋 ∈ (LSubSp‘𝑈) → 𝑋 ⊆ 𝑉) | 
| 20 | 18, 19 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → 𝑋 ⊆ 𝑉) | 
| 21 |  | dochshpncl.o | . . . . . . . . . . 11
⊢  ⊥ =
((ocH‘𝐾)‘𝑊) | 
| 22 | 7, 8, 2, 21 | dochocss 41368 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → 𝑋 ⊆ ( ⊥ ‘( ⊥
‘𝑋))) | 
| 23 | 9, 20, 22 | syl2anc 584 | . . . . . . . . 9
⊢ (𝜑 → 𝑋 ⊆ ( ⊥ ‘( ⊥
‘𝑋))) | 
| 24 | 23 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) → 𝑋 ⊆ ( ⊥ ‘( ⊥
‘𝑋))) | 
| 25 | 24 | 3ad2ant1 1134 | . . . . . . 7
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) ∧ 𝑣 ∈ 𝑉 ∧ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) → 𝑋 ⊆ ( ⊥ ‘( ⊥
‘𝑋))) | 
| 26 |  | simp1r 1199 | . . . . . . . 8
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) ∧ 𝑣 ∈ 𝑉 ∧ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) → ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) | 
| 27 | 26 | necomd 2996 | . . . . . . 7
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) ∧ 𝑣 ∈ 𝑉 ∧ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) → 𝑋 ≠ ( ⊥ ‘( ⊥
‘𝑋))) | 
| 28 |  | df-pss 3971 | . . . . . . 7
⊢ (𝑋 ⊊ ( ⊥ ‘( ⊥
‘𝑋)) ↔ (𝑋 ⊆ ( ⊥ ‘( ⊥
‘𝑋)) ∧ 𝑋 ≠ ( ⊥ ‘( ⊥
‘𝑋)))) | 
| 29 | 25, 27, 28 | sylanbrc 583 | . . . . . 6
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) ∧ 𝑣 ∈ 𝑉 ∧ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) → 𝑋 ⊊ ( ⊥ ‘( ⊥
‘𝑋))) | 
| 30 | 7, 8, 2, 21 | dochssv 41357 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) ⊆ 𝑉) | 
| 31 | 9, 20, 30 | syl2anc 584 | . . . . . . . . . 10
⊢ (𝜑 → ( ⊥ ‘𝑋) ⊆ 𝑉) | 
| 32 | 7, 8, 2, 21 | dochssv 41357 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑋) ⊆ 𝑉) → ( ⊥ ‘( ⊥
‘𝑋)) ⊆ 𝑉) | 
| 33 | 9, 31, 32 | syl2anc 584 | . . . . . . . . 9
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘𝑋)) ⊆ 𝑉) | 
| 34 | 33 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) → ( ⊥ ‘( ⊥
‘𝑋)) ⊆ 𝑉) | 
| 35 | 34 | 3ad2ant1 1134 | . . . . . . 7
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) ∧ 𝑣 ∈ 𝑉 ∧ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) → ( ⊥ ‘( ⊥
‘𝑋)) ⊆ 𝑉) | 
| 36 |  | simp3 1139 | . . . . . . 7
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) ∧ 𝑣 ∈ 𝑉 ∧ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) → (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) | 
| 37 | 35, 36 | sseqtrrd 4021 | . . . . . 6
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) ∧ 𝑣 ∈ 𝑉 ∧ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) → ( ⊥ ‘( ⊥
‘𝑋)) ⊆ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣}))) | 
| 38 | 9 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 39 | 7, 8, 38 | dvhlvec 41111 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑈 ∈ LVec) | 
| 40 | 18 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑋 ∈ (LSubSp‘𝑈)) | 
| 41 | 7, 8, 2, 4, 21 | dochlss 41356 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑋) ⊆ 𝑉) → ( ⊥ ‘( ⊥
‘𝑋)) ∈
(LSubSp‘𝑈)) | 
| 42 | 9, 31, 41 | syl2anc 584 | . . . . . . . 8
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘𝑋)) ∈
(LSubSp‘𝑈)) | 
| 43 | 42 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → ( ⊥ ‘( ⊥
‘𝑋)) ∈
(LSubSp‘𝑈)) | 
| 44 |  | simpr 484 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | 
| 45 | 2, 4, 3, 5, 39, 40, 43, 44 | lsmcv 21143 | . . . . . 6
⊢ (((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ 𝑋 ⊊ ( ⊥ ‘( ⊥
‘𝑋)) ∧ ( ⊥
‘( ⊥ ‘𝑋)) ⊆ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣}))) → ( ⊥ ‘( ⊥
‘𝑋)) = (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣}))) | 
| 46 | 17, 29, 37, 45 | syl3anc 1373 | . . . . 5
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) ∧ 𝑣 ∈ 𝑉 ∧ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) → ( ⊥ ‘( ⊥
‘𝑋)) = (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣}))) | 
| 47 | 46, 36 | eqtrd 2777 | . . . 4
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) ∧ 𝑣 ∈ 𝑉 ∧ (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉) → ( ⊥ ‘( ⊥
‘𝑋)) = 𝑉) | 
| 48 | 47 | rexlimdv3a 3159 | . . 3
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) → (∃𝑣 ∈ 𝑉 (𝑋(LSSum‘𝑈)((LSpan‘𝑈)‘{𝑣})) = 𝑉 → ( ⊥ ‘( ⊥
‘𝑋)) = 𝑉)) | 
| 49 | 14, 48 | mpd 15 | . 2
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) → ( ⊥ ‘( ⊥
‘𝑋)) = 𝑉) | 
| 50 |  | simpr 484 | . . 3
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑉) → ( ⊥ ‘( ⊥
‘𝑋)) = 𝑉) | 
| 51 | 2, 6, 10, 1 | lshpne 38983 | . . . . 5
⊢ (𝜑 → 𝑋 ≠ 𝑉) | 
| 52 | 51 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑉) → 𝑋 ≠ 𝑉) | 
| 53 | 52 | necomd 2996 | . . 3
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑉) → 𝑉 ≠ 𝑋) | 
| 54 | 50, 53 | eqnetrd 3008 | . 2
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑉) → ( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋) | 
| 55 | 49, 54 | impbida 801 | 1
⊢ (𝜑 → (( ⊥ ‘( ⊥
‘𝑋)) ≠ 𝑋 ↔ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑉)) |