![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrshp3 | Structured version Visualization version GIF version |
Description: The kernels of nonzero functionals are hyperplanes. (Contributed by NM, 17-Jul-2014.) |
Ref | Expression |
---|---|
lkrshp3.v | ⊢ 𝑉 = (Base‘𝑊) |
lkrshp3.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lkrshp3.o | ⊢ 0 = (0g‘𝐷) |
lkrshp3.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lkrshp3.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkrshp3.k | ⊢ 𝐾 = (LKer‘𝑊) |
lkrshp3.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lkrshp3.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Ref | Expression |
---|---|
lkrshp3 | ⊢ (𝜑 → ((𝐾‘𝐺) ∈ 𝐻 ↔ 𝐺 ≠ (𝑉 × { 0 }))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lkrshp3.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lkrshp3.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
3 | lkrshp3.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
4 | lveclmod 21084 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
6 | 5 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝐾‘𝐺) ∈ 𝐻) → 𝑊 ∈ LMod) |
7 | simpr 483 | . . . 4 ⊢ ((𝜑 ∧ (𝐾‘𝐺) ∈ 𝐻) → (𝐾‘𝐺) ∈ 𝐻) | |
8 | 1, 2, 6, 7 | lshpne 38680 | . . 3 ⊢ ((𝜑 ∧ (𝐾‘𝐺) ∈ 𝐻) → (𝐾‘𝐺) ≠ 𝑉) |
9 | lkrshp3.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
10 | lkrshp3.d | . . . . . . 7 ⊢ 𝐷 = (Scalar‘𝑊) | |
11 | lkrshp3.o | . . . . . . 7 ⊢ 0 = (0g‘𝐷) | |
12 | lkrshp3.f | . . . . . . 7 ⊢ 𝐹 = (LFnl‘𝑊) | |
13 | lkrshp3.k | . . . . . . 7 ⊢ 𝐾 = (LKer‘𝑊) | |
14 | 10, 11, 1, 12, 13 | lkr0f 38792 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × { 0 }))) |
15 | 5, 9, 14 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × { 0 }))) |
16 | 15 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝐾‘𝐺) ∈ 𝐻) → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × { 0 }))) |
17 | 16 | necon3bid 2975 | . . 3 ⊢ ((𝜑 ∧ (𝐾‘𝐺) ∈ 𝐻) → ((𝐾‘𝐺) ≠ 𝑉 ↔ 𝐺 ≠ (𝑉 × { 0 }))) |
18 | 8, 17 | mpbid 231 | . 2 ⊢ ((𝜑 ∧ (𝐾‘𝐺) ∈ 𝐻) → 𝐺 ≠ (𝑉 × { 0 })) |
19 | 3 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝐺 ≠ (𝑉 × { 0 })) → 𝑊 ∈ LVec) |
20 | 9 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝐺 ≠ (𝑉 × { 0 })) → 𝐺 ∈ 𝐹) |
21 | simpr 483 | . . 3 ⊢ ((𝜑 ∧ 𝐺 ≠ (𝑉 × { 0 })) → 𝐺 ≠ (𝑉 × { 0 })) | |
22 | 1, 10, 11, 2, 12, 13 | lkrshp 38803 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → (𝐾‘𝐺) ∈ 𝐻) |
23 | 19, 20, 21, 22 | syl3anc 1368 | . 2 ⊢ ((𝜑 ∧ 𝐺 ≠ (𝑉 × { 0 })) → (𝐾‘𝐺) ∈ 𝐻) |
24 | 18, 23 | impbida 799 | 1 ⊢ (𝜑 → ((𝐾‘𝐺) ∈ 𝐻 ↔ 𝐺 ≠ (𝑉 × { 0 }))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 {csn 4633 × cxp 5680 ‘cfv 6554 Basecbs 17213 Scalarcsca 17269 0gc0g 17454 LModclmod 20836 LVecclvec 21080 LSHypclsh 38673 LFnlclfn 38755 LKerclk 38783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-tpos 8241 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-0g 17456 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-submnd 18774 df-grp 18931 df-minusg 18932 df-sbg 18933 df-subg 19117 df-cntz 19311 df-lsm 19634 df-cmn 19780 df-abl 19781 df-mgp 20118 df-rng 20136 df-ur 20165 df-ring 20218 df-oppr 20316 df-dvdsr 20339 df-unit 20340 df-invr 20370 df-drng 20709 df-lmod 20838 df-lss 20909 df-lsp 20949 df-lvec 21081 df-lshyp 38675 df-lfl 38756 df-lkr 38784 |
This theorem is referenced by: lshpset2N 38817 lduallkr3 38860 |
Copyright terms: Public domain | W3C validator |