Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrshp3 Structured version   Visualization version   GIF version

Theorem lkrshp3 36348
Description: The kernels of nonzero functionals are hyperplanes. (Contributed by NM, 17-Jul-2014.)
Hypotheses
Ref Expression
lkrshp3.v 𝑉 = (Base‘𝑊)
lkrshp3.d 𝐷 = (Scalar‘𝑊)
lkrshp3.o 0 = (0g𝐷)
lkrshp3.h 𝐻 = (LSHyp‘𝑊)
lkrshp3.f 𝐹 = (LFnl‘𝑊)
lkrshp3.k 𝐾 = (LKer‘𝑊)
lkrshp3.w (𝜑𝑊 ∈ LVec)
lkrshp3.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lkrshp3 (𝜑 → ((𝐾𝐺) ∈ 𝐻𝐺 ≠ (𝑉 × { 0 })))

Proof of Theorem lkrshp3
StepHypRef Expression
1 lkrshp3.v . . . 4 𝑉 = (Base‘𝑊)
2 lkrshp3.h . . . 4 𝐻 = (LSHyp‘𝑊)
3 lkrshp3.w . . . . . 6 (𝜑𝑊 ∈ LVec)
4 lveclmod 19881 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
65adantr 484 . . . 4 ((𝜑 ∧ (𝐾𝐺) ∈ 𝐻) → 𝑊 ∈ LMod)
7 simpr 488 . . . 4 ((𝜑 ∧ (𝐾𝐺) ∈ 𝐻) → (𝐾𝐺) ∈ 𝐻)
81, 2, 6, 7lshpne 36224 . . 3 ((𝜑 ∧ (𝐾𝐺) ∈ 𝐻) → (𝐾𝐺) ≠ 𝑉)
9 lkrshp3.g . . . . . 6 (𝜑𝐺𝐹)
10 lkrshp3.d . . . . . . 7 𝐷 = (Scalar‘𝑊)
11 lkrshp3.o . . . . . . 7 0 = (0g𝐷)
12 lkrshp3.f . . . . . . 7 𝐹 = (LFnl‘𝑊)
13 lkrshp3.k . . . . . . 7 𝐾 = (LKer‘𝑊)
1410, 11, 1, 12, 13lkr0f 36336 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))
155, 9, 14syl2anc 587 . . . . 5 (𝜑 → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))
1615adantr 484 . . . 4 ((𝜑 ∧ (𝐾𝐺) ∈ 𝐻) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))
1716necon3bid 3058 . . 3 ((𝜑 ∧ (𝐾𝐺) ∈ 𝐻) → ((𝐾𝐺) ≠ 𝑉𝐺 ≠ (𝑉 × { 0 })))
188, 17mpbid 235 . 2 ((𝜑 ∧ (𝐾𝐺) ∈ 𝐻) → 𝐺 ≠ (𝑉 × { 0 }))
193adantr 484 . . 3 ((𝜑𝐺 ≠ (𝑉 × { 0 })) → 𝑊 ∈ LVec)
209adantr 484 . . 3 ((𝜑𝐺 ≠ (𝑉 × { 0 })) → 𝐺𝐹)
21 simpr 488 . . 3 ((𝜑𝐺 ≠ (𝑉 × { 0 })) → 𝐺 ≠ (𝑉 × { 0 }))
221, 10, 11, 2, 12, 13lkrshp 36347 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (𝐾𝐺) ∈ 𝐻)
2319, 20, 21, 22syl3anc 1368 . 2 ((𝜑𝐺 ≠ (𝑉 × { 0 })) → (𝐾𝐺) ∈ 𝐻)
2418, 23impbida 800 1 (𝜑 → ((𝐾𝐺) ∈ 𝐻𝐺 ≠ (𝑉 × { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3014  {csn 4551   × cxp 5541  cfv 6344  Basecbs 16486  Scalarcsca 16571  0gc0g 16716  LModclmod 19637  LVecclvec 19877  LSHypclsh 36217  LFnlclfn 36299  LKerclk 36327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7576  df-1st 7685  df-2nd 7686  df-tpos 7889  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-er 8286  df-map 8405  df-en 8507  df-dom 8508  df-sdom 8509  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11700  df-3 11701  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-subg 18279  df-cntz 18450  df-lsm 18764  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-oppr 19379  df-dvdsr 19397  df-unit 19398  df-invr 19428  df-drng 19507  df-lmod 19639  df-lss 19707  df-lsp 19747  df-lvec 19878  df-lshyp 36219  df-lfl 36300  df-lkr 36328
This theorem is referenced by:  lshpset2N  36361  lduallkr3  36404
  Copyright terms: Public domain W3C validator