| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrshp3 | Structured version Visualization version GIF version | ||
| Description: The kernels of nonzero functionals are hyperplanes. (Contributed by NM, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| lkrshp3.v | ⊢ 𝑉 = (Base‘𝑊) |
| lkrshp3.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lkrshp3.o | ⊢ 0 = (0g‘𝐷) |
| lkrshp3.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
| lkrshp3.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lkrshp3.k | ⊢ 𝐾 = (LKer‘𝑊) |
| lkrshp3.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lkrshp3.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| lkrshp3 | ⊢ (𝜑 → ((𝐾‘𝐺) ∈ 𝐻 ↔ 𝐺 ≠ (𝑉 × { 0 }))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lkrshp3.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lkrshp3.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 3 | lkrshp3.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 4 | lveclmod 21046 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐾‘𝐺) ∈ 𝐻) → 𝑊 ∈ LMod) |
| 7 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝐾‘𝐺) ∈ 𝐻) → (𝐾‘𝐺) ∈ 𝐻) | |
| 8 | 1, 2, 6, 7 | lshpne 39087 | . . 3 ⊢ ((𝜑 ∧ (𝐾‘𝐺) ∈ 𝐻) → (𝐾‘𝐺) ≠ 𝑉) |
| 9 | lkrshp3.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 10 | lkrshp3.d | . . . . . . 7 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 11 | lkrshp3.o | . . . . . . 7 ⊢ 0 = (0g‘𝐷) | |
| 12 | lkrshp3.f | . . . . . . 7 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 13 | lkrshp3.k | . . . . . . 7 ⊢ 𝐾 = (LKer‘𝑊) | |
| 14 | 10, 11, 1, 12, 13 | lkr0f 39199 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × { 0 }))) |
| 15 | 5, 9, 14 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × { 0 }))) |
| 16 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐾‘𝐺) ∈ 𝐻) → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × { 0 }))) |
| 17 | 16 | necon3bid 2972 | . . 3 ⊢ ((𝜑 ∧ (𝐾‘𝐺) ∈ 𝐻) → ((𝐾‘𝐺) ≠ 𝑉 ↔ 𝐺 ≠ (𝑉 × { 0 }))) |
| 18 | 8, 17 | mpbid 232 | . 2 ⊢ ((𝜑 ∧ (𝐾‘𝐺) ∈ 𝐻) → 𝐺 ≠ (𝑉 × { 0 })) |
| 19 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐺 ≠ (𝑉 × { 0 })) → 𝑊 ∈ LVec) |
| 20 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐺 ≠ (𝑉 × { 0 })) → 𝐺 ∈ 𝐹) |
| 21 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐺 ≠ (𝑉 × { 0 })) → 𝐺 ≠ (𝑉 × { 0 })) | |
| 22 | 1, 10, 11, 2, 12, 13 | lkrshp 39210 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → (𝐾‘𝐺) ∈ 𝐻) |
| 23 | 19, 20, 21, 22 | syl3anc 1373 | . 2 ⊢ ((𝜑 ∧ 𝐺 ≠ (𝑉 × { 0 })) → (𝐾‘𝐺) ∈ 𝐻) |
| 24 | 18, 23 | impbida 800 | 1 ⊢ (𝜑 → ((𝐾‘𝐺) ∈ 𝐻 ↔ 𝐺 ≠ (𝑉 × { 0 }))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {csn 4575 × cxp 5617 ‘cfv 6487 Basecbs 17126 Scalarcsca 17170 0gc0g 17349 LModclmod 20799 LVecclvec 21042 LSHypclsh 39080 LFnlclfn 39162 LKerclk 39190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-0g 17351 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-submnd 18698 df-grp 18855 df-minusg 18856 df-sbg 18857 df-subg 19042 df-cntz 19235 df-lsm 19554 df-cmn 19700 df-abl 19701 df-mgp 20065 df-rng 20077 df-ur 20106 df-ring 20159 df-oppr 20261 df-dvdsr 20281 df-unit 20282 df-invr 20312 df-drng 20652 df-lmod 20801 df-lss 20871 df-lsp 20911 df-lvec 21043 df-lshyp 39082 df-lfl 39163 df-lkr 39191 |
| This theorem is referenced by: lshpset2N 39224 lduallkr3 39267 |
| Copyright terms: Public domain | W3C validator |