MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssn0 Structured version   Visualization version   GIF version

Theorem lssn0 20871
Description: A subspace is not empty. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypothesis
Ref Expression
lssn0.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssn0 (𝑈𝑆𝑈 ≠ ∅)

Proof of Theorem lssn0
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
2 eqid 2731 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3 eqid 2731 . . 3 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2731 . . 3 (+g𝑊) = (+g𝑊)
5 eqid 2731 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
6 lssn0.s . . 3 𝑆 = (LSubSp‘𝑊)
71, 2, 3, 4, 5, 6islss 20865 . 2 (𝑈𝑆 ↔ (𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎𝑈𝑏𝑈 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈))
87simp2bi 1146 1 (𝑈𝑆𝑈 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wne 2928  wral 3047  wss 3902  c0 4283  cfv 6481  (class class class)co 7346  Basecbs 17117  +gcplusg 17158  Scalarcsca 17161   ·𝑠 cvsca 17162  LSubSpclss 20862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-lss 20863
This theorem is referenced by:  00lss  20872  lss0cl  20878  lssne0  20882  lsssubg  20888  lbsextlem2  21094  minveclem1  25349
  Copyright terms: Public domain W3C validator