MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssn0 Structured version   Visualization version   GIF version

Theorem lssn0 20961
Description: A subspace is not empty. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypothesis
Ref Expression
lssn0.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssn0 (𝑈𝑆𝑈 ≠ ∅)

Proof of Theorem lssn0
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
2 eqid 2740 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3 eqid 2740 . . 3 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2740 . . 3 (+g𝑊) = (+g𝑊)
5 eqid 2740 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
6 lssn0.s . . 3 𝑆 = (LSubSp‘𝑊)
71, 2, 3, 4, 5, 6islss 20955 . 2 (𝑈𝑆 ↔ (𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎𝑈𝑏𝑈 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈))
87simp2bi 1146 1 (𝑈𝑆𝑈 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wne 2946  wral 3067  wss 3976  c0 4352  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  Scalarcsca 17314   ·𝑠 cvsca 17315  LSubSpclss 20952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-lss 20953
This theorem is referenced by:  00lss  20962  lss0cl  20968  lssne0  20972  lsssubg  20978  lbsextlem2  21184  minveclem1  25477
  Copyright terms: Public domain W3C validator