MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssn0 Structured version   Visualization version   GIF version

Theorem lssn0 20779
Description: A subspace is not empty. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypothesis
Ref Expression
lssn0.s 𝑆 = (LSubSpβ€˜π‘Š)
Assertion
Ref Expression
lssn0 (π‘ˆ ∈ 𝑆 β†’ π‘ˆ β‰  βˆ…)

Proof of Theorem lssn0
Dummy variables π‘Ž 𝑏 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2724 . . 3 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
2 eqid 2724 . . 3 (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š))
3 eqid 2724 . . 3 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
4 eqid 2724 . . 3 (+gβ€˜π‘Š) = (+gβ€˜π‘Š)
5 eqid 2724 . . 3 ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘Š)
6 lssn0.s . . 3 𝑆 = (LSubSpβ€˜π‘Š)
71, 2, 3, 4, 5, 6islss 20773 . 2 (π‘ˆ ∈ 𝑆 ↔ (π‘ˆ βŠ† (Baseβ€˜π‘Š) ∧ π‘ˆ β‰  βˆ… ∧ βˆ€π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š))βˆ€π‘Ž ∈ π‘ˆ βˆ€π‘ ∈ π‘ˆ ((π‘₯( ·𝑠 β€˜π‘Š)π‘Ž)(+gβ€˜π‘Š)𝑏) ∈ π‘ˆ))
87simp2bi 1143 1 (π‘ˆ ∈ 𝑆 β†’ π‘ˆ β‰  βˆ…)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098   β‰  wne 2932  βˆ€wral 3053   βŠ† wss 3941  βˆ…c0 4315  β€˜cfv 6534  (class class class)co 7402  Basecbs 17145  +gcplusg 17198  Scalarcsca 17201   ·𝑠 cvsca 17202  LSubSpclss 20770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6486  df-fun 6536  df-fv 6542  df-ov 7405  df-lss 20771
This theorem is referenced by:  00lss  20780  lss0cl  20786  lssne0  20790  lsssubg  20796  lbsextlem2  21002  minveclem1  25276
  Copyright terms: Public domain W3C validator