| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssn0 | Structured version Visualization version GIF version | ||
| Description: A subspace is not empty. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| lssn0.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lssn0 | ⊢ (𝑈 ∈ 𝑆 → 𝑈 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 2 | eqid 2733 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 3 | eqid 2733 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | eqid 2733 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 5 | eqid 2733 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 6 | lssn0.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | islss 20869 | . 2 ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈)) |
| 8 | 7 | simp2bi 1146 | 1 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ⊆ wss 3898 ∅c0 4282 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 Scalarcsca 17166 ·𝑠 cvsca 17167 LSubSpclss 20866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-lss 20867 |
| This theorem is referenced by: 00lss 20876 lss0cl 20882 lssne0 20886 lsssubg 20892 lbsextlem2 21098 minveclem1 25352 |
| Copyright terms: Public domain | W3C validator |