MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssn0 Structured version   Visualization version   GIF version

Theorem lssn0 19931
Description: A subspace is not empty. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypothesis
Ref Expression
lssn0.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssn0 (𝑈𝑆𝑈 ≠ ∅)

Proof of Theorem lssn0
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
2 eqid 2736 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3 eqid 2736 . . 3 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2736 . . 3 (+g𝑊) = (+g𝑊)
5 eqid 2736 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
6 lssn0.s . . 3 𝑆 = (LSubSp‘𝑊)
71, 2, 3, 4, 5, 6islss 19925 . 2 (𝑈𝑆 ↔ (𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎𝑈𝑏𝑈 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑈))
87simp2bi 1148 1 (𝑈𝑆𝑈 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  wne 2932  wral 3051  wss 3853  c0 4223  cfv 6358  (class class class)co 7191  Basecbs 16666  +gcplusg 16749  Scalarcsca 16752   ·𝑠 cvsca 16753  LSubSpclss 19922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-iota 6316  df-fun 6360  df-fv 6366  df-ov 7194  df-lss 19923
This theorem is referenced by:  00lss  19932  lss0cl  19937  lssne0  19941  lsssubg  19948  lbsextlem2  20150  minveclem1  24275
  Copyright terms: Public domain W3C validator