MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssn0 Structured version   Visualization version   GIF version

Theorem lssn0 20550
Description: A subspace is not empty. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypothesis
Ref Expression
lssn0.s 𝑆 = (LSubSpβ€˜π‘Š)
Assertion
Ref Expression
lssn0 (π‘ˆ ∈ 𝑆 β†’ π‘ˆ β‰  βˆ…)

Proof of Theorem lssn0
Dummy variables π‘Ž 𝑏 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . 3 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
2 eqid 2732 . . 3 (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š))
3 eqid 2732 . . 3 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
4 eqid 2732 . . 3 (+gβ€˜π‘Š) = (+gβ€˜π‘Š)
5 eqid 2732 . . 3 ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘Š)
6 lssn0.s . . 3 𝑆 = (LSubSpβ€˜π‘Š)
71, 2, 3, 4, 5, 6islss 20544 . 2 (π‘ˆ ∈ 𝑆 ↔ (π‘ˆ βŠ† (Baseβ€˜π‘Š) ∧ π‘ˆ β‰  βˆ… ∧ βˆ€π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š))βˆ€π‘Ž ∈ π‘ˆ βˆ€π‘ ∈ π‘ˆ ((π‘₯( ·𝑠 β€˜π‘Š)π‘Ž)(+gβ€˜π‘Š)𝑏) ∈ π‘ˆ))
87simp2bi 1146 1 (π‘ˆ ∈ 𝑆 β†’ π‘ˆ β‰  βˆ…)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061   βŠ† wss 3948  βˆ…c0 4322  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  +gcplusg 17196  Scalarcsca 17199   ·𝑠 cvsca 17200  LSubSpclss 20541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-lss 20542
This theorem is referenced by:  00lss  20551  lss0cl  20556  lssne0  20560  lsssubg  20567  lbsextlem2  20771  minveclem1  24940
  Copyright terms: Public domain W3C validator