MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islss Structured version   Visualization version   GIF version

Theorem islss 20950
Description: The predicate "is a subspace" (of a left module or left vector space). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lssset.f 𝐹 = (Scalar‘𝑊)
lssset.b 𝐵 = (Base‘𝐹)
lssset.v 𝑉 = (Base‘𝑊)
lssset.p + = (+g𝑊)
lssset.t · = ( ·𝑠𝑊)
lssset.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
islss (𝑈𝑆 ↔ (𝑈𝑉𝑈 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
Distinct variable groups:   𝑥,𝐵   𝑎,𝑏,𝑥,𝑊   𝑈,𝑎,𝑏,𝑥
Allowed substitution hints:   𝐵(𝑎,𝑏)   + (𝑥,𝑎,𝑏)   𝑆(𝑥,𝑎,𝑏)   · (𝑥,𝑎,𝑏)   𝐹(𝑥,𝑎,𝑏)   𝑉(𝑥,𝑎,𝑏)

Proof of Theorem islss
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6945 . . 3 (𝑈 ∈ (LSubSp‘𝑊) → 𝑊 ∈ V)
2 lssset.s . . 3 𝑆 = (LSubSp‘𝑊)
31, 2eleq2s 2857 . 2 (𝑈𝑆𝑊 ∈ V)
4 lssset.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
5 fvprc 6899 . . . . . . . . 9 𝑊 ∈ V → (Base‘𝑊) = ∅)
64, 5eqtrid 2787 . . . . . . . 8 𝑊 ∈ V → 𝑉 = ∅)
76sseq2d 4028 . . . . . . 7 𝑊 ∈ V → (𝑈𝑉𝑈 ⊆ ∅))
87biimpcd 249 . . . . . 6 (𝑈𝑉 → (¬ 𝑊 ∈ V → 𝑈 ⊆ ∅))
9 ss0 4408 . . . . . 6 (𝑈 ⊆ ∅ → 𝑈 = ∅)
108, 9syl6 35 . . . . 5 (𝑈𝑉 → (¬ 𝑊 ∈ V → 𝑈 = ∅))
1110necon1ad 2955 . . . 4 (𝑈𝑉 → (𝑈 ≠ ∅ → 𝑊 ∈ V))
1211imp 406 . . 3 ((𝑈𝑉𝑈 ≠ ∅) → 𝑊 ∈ V)
13123adant3 1131 . 2 ((𝑈𝑉𝑈 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) → 𝑊 ∈ V)
14 lssset.f . . . . 5 𝐹 = (Scalar‘𝑊)
15 lssset.b . . . . 5 𝐵 = (Base‘𝐹)
16 lssset.p . . . . 5 + = (+g𝑊)
17 lssset.t . . . . 5 · = ( ·𝑠𝑊)
1814, 15, 4, 16, 17, 2lssset 20949 . . . 4 (𝑊 ∈ V → 𝑆 = {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠})
1918eleq2d 2825 . . 3 (𝑊 ∈ V → (𝑈𝑆𝑈 ∈ {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠}))
20 eldifsn 4791 . . . . . 6 (𝑈 ∈ (𝒫 𝑉 ∖ {∅}) ↔ (𝑈 ∈ 𝒫 𝑉𝑈 ≠ ∅))
214fvexi 6921 . . . . . . . 8 𝑉 ∈ V
2221elpw2 5340 . . . . . . 7 (𝑈 ∈ 𝒫 𝑉𝑈𝑉)
2322anbi1i 624 . . . . . 6 ((𝑈 ∈ 𝒫 𝑉𝑈 ≠ ∅) ↔ (𝑈𝑉𝑈 ≠ ∅))
2420, 23bitri 275 . . . . 5 (𝑈 ∈ (𝒫 𝑉 ∖ {∅}) ↔ (𝑈𝑉𝑈 ≠ ∅))
2524anbi1i 624 . . . 4 ((𝑈 ∈ (𝒫 𝑉 ∖ {∅}) ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) ↔ ((𝑈𝑉𝑈 ≠ ∅) ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
26 eleq2 2828 . . . . . . . 8 (𝑠 = 𝑈 → (((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
2726raleqbi1dv 3336 . . . . . . 7 (𝑠 = 𝑈 → (∀𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ∀𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
2827raleqbi1dv 3336 . . . . . 6 (𝑠 = 𝑈 → (∀𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ∀𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
2928ralbidv 3176 . . . . 5 (𝑠 = 𝑈 → (∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
3029elrab 3695 . . . 4 (𝑈 ∈ {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠} ↔ (𝑈 ∈ (𝒫 𝑉 ∖ {∅}) ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
31 df-3an 1088 . . . 4 ((𝑈𝑉𝑈 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) ↔ ((𝑈𝑉𝑈 ≠ ∅) ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
3225, 30, 313bitr4i 303 . . 3 (𝑈 ∈ {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠} ↔ (𝑈𝑉𝑈 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
3319, 32bitrdi 287 . 2 (𝑊 ∈ V → (𝑈𝑆 ↔ (𝑈𝑉𝑈 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)))
343, 13, 33pm5.21nii 378 1 (𝑈𝑆 ↔ (𝑈𝑉𝑈 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  {crab 3433  Vcvv 3478  cdif 3960  wss 3963  c0 4339  𝒫 cpw 4605  {csn 4631  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  Scalarcsca 17301   ·𝑠 cvsca 17302  LSubSpclss 20947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-lss 20948
This theorem is referenced by:  islssd  20951  lssss  20952  lssn0  20956  lsscl  20958  islss4  20978  lsspropd  21034  islidl  21243  ocvlss  21708  lkrlss  39077  lclkr  41516  lclkrs  41522  lcfr  41568
  Copyright terms: Public domain W3C validator