MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islss Structured version   Visualization version   GIF version

Theorem islss 19338
Description: The predicate "is a subspace" (of a left module or left vector space). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lssset.f 𝐹 = (Scalar‘𝑊)
lssset.b 𝐵 = (Base‘𝐹)
lssset.v 𝑉 = (Base‘𝑊)
lssset.p + = (+g𝑊)
lssset.t · = ( ·𝑠𝑊)
lssset.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
islss (𝑈𝑆 ↔ (𝑈𝑉𝑈 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
Distinct variable groups:   𝑥,𝐵   𝑎,𝑏,𝑥,𝑊   𝑈,𝑎,𝑏,𝑥
Allowed substitution hints:   𝐵(𝑎,𝑏)   + (𝑥,𝑎,𝑏)   𝑆(𝑥,𝑎,𝑏)   · (𝑥,𝑎,𝑏)   𝐹(𝑥,𝑎,𝑏)   𝑉(𝑥,𝑎,𝑏)

Proof of Theorem islss
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6482 . . 3 (𝑈 ∈ (LSubSp‘𝑊) → 𝑊 ∈ V)
2 lssset.s . . 3 𝑆 = (LSubSp‘𝑊)
31, 2eleq2s 2877 . 2 (𝑈𝑆𝑊 ∈ V)
4 lssset.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
5 fvprc 6441 . . . . . . . . 9 𝑊 ∈ V → (Base‘𝑊) = ∅)
64, 5syl5eq 2826 . . . . . . . 8 𝑊 ∈ V → 𝑉 = ∅)
76sseq2d 3852 . . . . . . 7 𝑊 ∈ V → (𝑈𝑉𝑈 ⊆ ∅))
87biimpcd 241 . . . . . 6 (𝑈𝑉 → (¬ 𝑊 ∈ V → 𝑈 ⊆ ∅))
9 ss0 4200 . . . . . 6 (𝑈 ⊆ ∅ → 𝑈 = ∅)
108, 9syl6 35 . . . . 5 (𝑈𝑉 → (¬ 𝑊 ∈ V → 𝑈 = ∅))
1110necon1ad 2986 . . . 4 (𝑈𝑉 → (𝑈 ≠ ∅ → 𝑊 ∈ V))
1211imp 397 . . 3 ((𝑈𝑉𝑈 ≠ ∅) → 𝑊 ∈ V)
13123adant3 1123 . 2 ((𝑈𝑉𝑈 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) → 𝑊 ∈ V)
14 lssset.f . . . . 5 𝐹 = (Scalar‘𝑊)
15 lssset.b . . . . 5 𝐵 = (Base‘𝐹)
16 lssset.p . . . . 5 + = (+g𝑊)
17 lssset.t . . . . 5 · = ( ·𝑠𝑊)
1814, 15, 4, 16, 17, 2lssset 19337 . . . 4 (𝑊 ∈ V → 𝑆 = {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠})
1918eleq2d 2845 . . 3 (𝑊 ∈ V → (𝑈𝑆𝑈 ∈ {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠}))
20 eldifsn 4550 . . . . . 6 (𝑈 ∈ (𝒫 𝑉 ∖ {∅}) ↔ (𝑈 ∈ 𝒫 𝑉𝑈 ≠ ∅))
214fvexi 6462 . . . . . . . 8 𝑉 ∈ V
2221elpw2 5064 . . . . . . 7 (𝑈 ∈ 𝒫 𝑉𝑈𝑉)
2322anbi1i 617 . . . . . 6 ((𝑈 ∈ 𝒫 𝑉𝑈 ≠ ∅) ↔ (𝑈𝑉𝑈 ≠ ∅))
2420, 23bitri 267 . . . . 5 (𝑈 ∈ (𝒫 𝑉 ∖ {∅}) ↔ (𝑈𝑉𝑈 ≠ ∅))
2524anbi1i 617 . . . 4 ((𝑈 ∈ (𝒫 𝑉 ∖ {∅}) ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) ↔ ((𝑈𝑉𝑈 ≠ ∅) ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
26 eleq2 2848 . . . . . . . 8 (𝑠 = 𝑈 → (((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
2726raleqbi1dv 3328 . . . . . . 7 (𝑠 = 𝑈 → (∀𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ∀𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
2827raleqbi1dv 3328 . . . . . 6 (𝑠 = 𝑈 → (∀𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ∀𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
2928ralbidv 3168 . . . . 5 (𝑠 = 𝑈 → (∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
3029elrab 3572 . . . 4 (𝑈 ∈ {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠} ↔ (𝑈 ∈ (𝒫 𝑉 ∖ {∅}) ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
31 df-3an 1073 . . . 4 ((𝑈𝑉𝑈 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) ↔ ((𝑈𝑉𝑈 ≠ ∅) ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
3225, 30, 313bitr4i 295 . . 3 (𝑈 ∈ {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠} ↔ (𝑈𝑉𝑈 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
3319, 32syl6bb 279 . 2 (𝑊 ∈ V → (𝑈𝑆 ↔ (𝑈𝑉𝑈 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)))
343, 13, 33pm5.21nii 370 1 (𝑈𝑆 ↔ (𝑈𝑉𝑈 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969  wral 3090  {crab 3094  Vcvv 3398  cdif 3789  wss 3792  c0 4141  𝒫 cpw 4379  {csn 4398  cfv 6137  (class class class)co 6924  Basecbs 16266  +gcplusg 16349  Scalarcsca 16352   ·𝑠 cvsca 16353  LSubSpclss 19335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-iota 6101  df-fun 6139  df-fv 6145  df-ov 6927  df-lss 19336
This theorem is referenced by:  islssd  19339  lssss  19340  lssn0  19344  lsscl  19346  islss4  19368  lsspropd  19423  islidl  19619  ocvlss  20426  lkrlss  35258  lclkr  37696  lclkrs  37702  lcfr  37748
  Copyright terms: Public domain W3C validator