MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islss Structured version   Visualization version   GIF version

Theorem islss 20955
Description: The predicate "is a subspace" (of a left module or left vector space). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lssset.f 𝐹 = (Scalar‘𝑊)
lssset.b 𝐵 = (Base‘𝐹)
lssset.v 𝑉 = (Base‘𝑊)
lssset.p + = (+g𝑊)
lssset.t · = ( ·𝑠𝑊)
lssset.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
islss (𝑈𝑆 ↔ (𝑈𝑉𝑈 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
Distinct variable groups:   𝑥,𝐵   𝑎,𝑏,𝑥,𝑊   𝑈,𝑎,𝑏,𝑥
Allowed substitution hints:   𝐵(𝑎,𝑏)   + (𝑥,𝑎,𝑏)   𝑆(𝑥,𝑎,𝑏)   · (𝑥,𝑎,𝑏)   𝐹(𝑥,𝑎,𝑏)   𝑉(𝑥,𝑎,𝑏)

Proof of Theorem islss
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6958 . . 3 (𝑈 ∈ (LSubSp‘𝑊) → 𝑊 ∈ V)
2 lssset.s . . 3 𝑆 = (LSubSp‘𝑊)
31, 2eleq2s 2862 . 2 (𝑈𝑆𝑊 ∈ V)
4 lssset.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
5 fvprc 6912 . . . . . . . . 9 𝑊 ∈ V → (Base‘𝑊) = ∅)
64, 5eqtrid 2792 . . . . . . . 8 𝑊 ∈ V → 𝑉 = ∅)
76sseq2d 4041 . . . . . . 7 𝑊 ∈ V → (𝑈𝑉𝑈 ⊆ ∅))
87biimpcd 249 . . . . . 6 (𝑈𝑉 → (¬ 𝑊 ∈ V → 𝑈 ⊆ ∅))
9 ss0 4425 . . . . . 6 (𝑈 ⊆ ∅ → 𝑈 = ∅)
108, 9syl6 35 . . . . 5 (𝑈𝑉 → (¬ 𝑊 ∈ V → 𝑈 = ∅))
1110necon1ad 2963 . . . 4 (𝑈𝑉 → (𝑈 ≠ ∅ → 𝑊 ∈ V))
1211imp 406 . . 3 ((𝑈𝑉𝑈 ≠ ∅) → 𝑊 ∈ V)
13123adant3 1132 . 2 ((𝑈𝑉𝑈 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) → 𝑊 ∈ V)
14 lssset.f . . . . 5 𝐹 = (Scalar‘𝑊)
15 lssset.b . . . . 5 𝐵 = (Base‘𝐹)
16 lssset.p . . . . 5 + = (+g𝑊)
17 lssset.t . . . . 5 · = ( ·𝑠𝑊)
1814, 15, 4, 16, 17, 2lssset 20954 . . . 4 (𝑊 ∈ V → 𝑆 = {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠})
1918eleq2d 2830 . . 3 (𝑊 ∈ V → (𝑈𝑆𝑈 ∈ {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠}))
20 eldifsn 4811 . . . . . 6 (𝑈 ∈ (𝒫 𝑉 ∖ {∅}) ↔ (𝑈 ∈ 𝒫 𝑉𝑈 ≠ ∅))
214fvexi 6934 . . . . . . . 8 𝑉 ∈ V
2221elpw2 5352 . . . . . . 7 (𝑈 ∈ 𝒫 𝑉𝑈𝑉)
2322anbi1i 623 . . . . . 6 ((𝑈 ∈ 𝒫 𝑉𝑈 ≠ ∅) ↔ (𝑈𝑉𝑈 ≠ ∅))
2420, 23bitri 275 . . . . 5 (𝑈 ∈ (𝒫 𝑉 ∖ {∅}) ↔ (𝑈𝑉𝑈 ≠ ∅))
2524anbi1i 623 . . . 4 ((𝑈 ∈ (𝒫 𝑉 ∖ {∅}) ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) ↔ ((𝑈𝑉𝑈 ≠ ∅) ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
26 eleq2 2833 . . . . . . . 8 (𝑠 = 𝑈 → (((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
2726raleqbi1dv 3346 . . . . . . 7 (𝑠 = 𝑈 → (∀𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ∀𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
2827raleqbi1dv 3346 . . . . . 6 (𝑠 = 𝑈 → (∀𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ∀𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
2928ralbidv 3184 . . . . 5 (𝑠 = 𝑈 → (∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
3029elrab 3708 . . . 4 (𝑈 ∈ {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠} ↔ (𝑈 ∈ (𝒫 𝑉 ∖ {∅}) ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
31 df-3an 1089 . . . 4 ((𝑈𝑉𝑈 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) ↔ ((𝑈𝑉𝑈 ≠ ∅) ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
3225, 30, 313bitr4i 303 . . 3 (𝑈 ∈ {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠} ↔ (𝑈𝑉𝑈 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
3319, 32bitrdi 287 . 2 (𝑊 ∈ V → (𝑈𝑆 ↔ (𝑈𝑉𝑈 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)))
343, 13, 33pm5.21nii 378 1 (𝑈𝑆 ↔ (𝑈𝑉𝑈 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  Vcvv 3488  cdif 3973  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  Scalarcsca 17314   ·𝑠 cvsca 17315  LSubSpclss 20952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-lss 20953
This theorem is referenced by:  islssd  20956  lssss  20957  lssn0  20961  lsscl  20963  islss4  20983  lsspropd  21039  islidl  21248  ocvlss  21713  lkrlss  39051  lclkr  41490  lclkrs  41496  lcfr  41542
  Copyright terms: Public domain W3C validator