| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsssubg | Structured version Visualization version GIF version | ||
| Description: All subspaces are subgroups. (Contributed by Stefan O'Rear, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| lsssubg.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lsssubg | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | lsssubg.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | 1, 2 | lssss 20891 | . . 3 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (Base‘𝑊)) |
| 5 | 2 | lssn0 20895 | . . 3 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ≠ ∅) |
| 6 | 5 | adantl 481 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ≠ ∅) |
| 7 | eqid 2735 | . . . . . . 7 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 8 | 7, 2 | lssvacl 20898 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑥(+g‘𝑊)𝑦) ∈ 𝑈) |
| 9 | 8 | anassrs 467 | . . . . 5 ⊢ ((((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → (𝑥(+g‘𝑊)𝑦) ∈ 𝑈) |
| 10 | 9 | ralrimiva 3132 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ 𝑈) → ∀𝑦 ∈ 𝑈 (𝑥(+g‘𝑊)𝑦) ∈ 𝑈) |
| 11 | eqid 2735 | . . . . . 6 ⊢ (invg‘𝑊) = (invg‘𝑊) | |
| 12 | 2, 11 | lssvnegcl 20911 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈) → ((invg‘𝑊)‘𝑥) ∈ 𝑈) |
| 13 | 12 | 3expa 1118 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ 𝑈) → ((invg‘𝑊)‘𝑥) ∈ 𝑈) |
| 14 | 10, 13 | jca 511 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ 𝑈) → (∀𝑦 ∈ 𝑈 (𝑥(+g‘𝑊)𝑦) ∈ 𝑈 ∧ ((invg‘𝑊)‘𝑥) ∈ 𝑈)) |
| 15 | 14 | ralrimiva 3132 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ∀𝑥 ∈ 𝑈 (∀𝑦 ∈ 𝑈 (𝑥(+g‘𝑊)𝑦) ∈ 𝑈 ∧ ((invg‘𝑊)‘𝑥) ∈ 𝑈)) |
| 16 | lmodgrp 20822 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 17 | 16 | adantr 480 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑊 ∈ Grp) |
| 18 | 1, 7, 11 | issubg2 19122 | . . 3 ⊢ (𝑊 ∈ Grp → (𝑈 ∈ (SubGrp‘𝑊) ↔ (𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∀𝑦 ∈ 𝑈 (𝑥(+g‘𝑊)𝑦) ∈ 𝑈 ∧ ((invg‘𝑊)‘𝑥) ∈ 𝑈)))) |
| 19 | 17, 18 | syl 17 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑈 ∈ (SubGrp‘𝑊) ↔ (𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∀𝑦 ∈ 𝑈 (𝑥(+g‘𝑊)𝑦) ∈ 𝑈 ∧ ((invg‘𝑊)‘𝑥) ∈ 𝑈)))) |
| 20 | 4, 6, 15, 19 | mpbir3and 1343 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ⊆ wss 3926 ∅c0 4308 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 +gcplusg 17269 Grpcgrp 18914 invgcminusg 18915 SubGrpcsubg 19101 LModclmod 20815 LSubSpclss 20886 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-minusg 18918 df-sbg 18919 df-subg 19104 df-mgp 20099 df-ur 20140 df-ring 20193 df-lmod 20817 df-lss 20887 |
| This theorem is referenced by: lsssssubg 20913 islss3 20914 islss4 20917 lspsnsubg 20935 lmhmima 21003 lmhmpreima 21004 reslmhm 21008 reslmhm2 21009 reslmhm2b 21010 lsmcl 21039 lsmelval2 21041 phssip 21616 frlm0 21712 frlmsubgval 21723 frlmgsum 21730 frlmsslsp 21754 lssnlm 24638 cphsscph 25201 cmscsscms 25323 cssbn 25325 eqgvscpbl 33311 qusvscpbl 33312 quslmod 33319 quslmhm 33320 ply1degltdimlem 33608 lindsunlem 33610 lbsdiflsp0 33612 dimkerim 33613 qusdimsum 33614 islshpat 38981 lsatcv1 39012 dia2dimlem13 41041 dihvalcqat 41204 dihmeetlem16N 41287 dihmeetlem19N 41290 dochsat 41348 dihjat1lem 41393 dihjat1 41394 dvh3dimatN 41404 dvh2dimatN 41405 dochkrsm 41423 dochexmid 41433 mapdh6dN 41704 hdmap1l6d 41778 pwssplit4 43060 gsumlsscl 48303 |
| Copyright terms: Public domain | W3C validator |