![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsssubg | Structured version Visualization version GIF version |
Description: All subspaces are subgroups. (Contributed by Stefan O'Rear, 11-Dec-2014.) |
Ref | Expression |
---|---|
lsssubg.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lsssubg | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | lsssubg.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | 1, 2 | lssss 20827 | . . 3 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
4 | 3 | adantl 480 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (Base‘𝑊)) |
5 | 2 | lssn0 20831 | . . 3 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ≠ ∅) |
6 | 5 | adantl 480 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ≠ ∅) |
7 | eqid 2728 | . . . . . . 7 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
8 | 7, 2 | lssvacl 20834 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑥(+g‘𝑊)𝑦) ∈ 𝑈) |
9 | 8 | anassrs 466 | . . . . 5 ⊢ ((((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ 𝑈) → (𝑥(+g‘𝑊)𝑦) ∈ 𝑈) |
10 | 9 | ralrimiva 3143 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ 𝑈) → ∀𝑦 ∈ 𝑈 (𝑥(+g‘𝑊)𝑦) ∈ 𝑈) |
11 | eqid 2728 | . . . . . 6 ⊢ (invg‘𝑊) = (invg‘𝑊) | |
12 | 2, 11 | lssvnegcl 20847 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈) → ((invg‘𝑊)‘𝑥) ∈ 𝑈) |
13 | 12 | 3expa 1115 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ 𝑈) → ((invg‘𝑊)‘𝑥) ∈ 𝑈) |
14 | 10, 13 | jca 510 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑥 ∈ 𝑈) → (∀𝑦 ∈ 𝑈 (𝑥(+g‘𝑊)𝑦) ∈ 𝑈 ∧ ((invg‘𝑊)‘𝑥) ∈ 𝑈)) |
15 | 14 | ralrimiva 3143 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ∀𝑥 ∈ 𝑈 (∀𝑦 ∈ 𝑈 (𝑥(+g‘𝑊)𝑦) ∈ 𝑈 ∧ ((invg‘𝑊)‘𝑥) ∈ 𝑈)) |
16 | lmodgrp 20757 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
17 | 16 | adantr 479 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑊 ∈ Grp) |
18 | 1, 7, 11 | issubg2 19103 | . . 3 ⊢ (𝑊 ∈ Grp → (𝑈 ∈ (SubGrp‘𝑊) ↔ (𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∀𝑦 ∈ 𝑈 (𝑥(+g‘𝑊)𝑦) ∈ 𝑈 ∧ ((invg‘𝑊)‘𝑥) ∈ 𝑈)))) |
19 | 17, 18 | syl 17 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑈 ∈ (SubGrp‘𝑊) ↔ (𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∀𝑦 ∈ 𝑈 (𝑥(+g‘𝑊)𝑦) ∈ 𝑈 ∧ ((invg‘𝑊)‘𝑥) ∈ 𝑈)))) |
20 | 4, 6, 15, 19 | mpbir3and 1339 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 ∀wral 3058 ⊆ wss 3949 ∅c0 4326 ‘cfv 6553 (class class class)co 7426 Basecbs 17187 +gcplusg 17240 Grpcgrp 18897 invgcminusg 18898 SubGrpcsubg 19082 LModclmod 20750 LSubSpclss 20822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-0g 17430 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-grp 18900 df-minusg 18901 df-sbg 18902 df-subg 19085 df-mgp 20082 df-ur 20129 df-ring 20182 df-lmod 20752 df-lss 20823 |
This theorem is referenced by: lsssssubg 20849 islss3 20850 islss4 20853 lspsnsubg 20871 lmhmima 20939 lmhmpreima 20940 reslmhm 20944 reslmhm2 20945 reslmhm2b 20946 lsmcl 20975 lsmelval2 20977 phssip 21597 frlm0 21695 frlmsubgval 21706 frlmgsum 21713 frlmsslsp 21737 lssnlm 24638 cphsscph 25199 cmscsscms 25321 cssbn 25323 eqgvscpbl 33086 qusvscpbl 33087 quslmod 33094 quslmhm 33095 ply1degltdimlem 33353 lindsunlem 33355 lbsdiflsp0 33357 dimkerim 33358 qusdimsum 33359 islshpat 38521 lsatcv1 38552 dia2dimlem13 40581 dihvalcqat 40744 dihmeetlem16N 40827 dihmeetlem19N 40830 dochsat 40888 dihjat1lem 40933 dihjat1 40934 dvh3dimatN 40944 dvh2dimatN 40945 dochkrsm 40963 dochexmid 40973 mapdh6dN 41244 hdmap1l6d 41318 pwssplit4 42544 gsumlsscl 47525 |
Copyright terms: Public domain | W3C validator |