MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legov3 Structured version   Visualization version   GIF version

Theorem legov3 26536
Description: An equivalent definition of the less-than relationship, from the strict relation. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legso.a 𝐸 = ( “ (𝑃 × 𝑃))
legso.f (𝜑 → Fun )
legso.l < = (( 𝐸) ∖ I )
legso.d (𝜑 → (𝑃 × 𝑃) ⊆ dom )
ltgov.a (𝜑𝐴𝑃)
ltgov.b (𝜑𝐵𝑃)
Assertion
Ref Expression
legov3 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ((𝐴 𝐵) < (𝐶 𝐷) ∨ (𝐴 𝐵) = (𝐶 𝐷))))

Proof of Theorem legov3
StepHypRef Expression
1 legval.p . . . 4 𝑃 = (Base‘𝐺)
2 legval.d . . . 4 = (dist‘𝐺)
3 legval.i . . . 4 𝐼 = (Itv‘𝐺)
4 legval.l . . . 4 = (≤G‘𝐺)
5 legval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
6 legso.a . . . 4 𝐸 = ( “ (𝑃 × 𝑃))
7 legso.f . . . 4 (𝜑 → Fun )
8 legso.l . . . 4 < = (( 𝐸) ∖ I )
9 legso.d . . . 4 (𝜑 → (𝑃 × 𝑃) ⊆ dom )
10 ltgov.a . . . 4 (𝜑𝐴𝑃)
11 ltgov.b . . . 4 (𝜑𝐵𝑃)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ltgov 26535 . . 3 (𝜑 → ((𝐴 𝐵) < (𝐶 𝐷) ↔ ((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷))))
1312orbi1d 916 . 2 (𝜑 → (((𝐴 𝐵) < (𝐶 𝐷) ∨ (𝐴 𝐵) = (𝐶 𝐷)) ↔ (((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷)) ∨ (𝐴 𝐵) = (𝐶 𝐷))))
14 simprl 771 . . . 4 (((𝜑 ∧ (((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷)) ∨ (𝐴 𝐵) = (𝐶 𝐷))) ∧ ((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷))) → (𝐴 𝐵) (𝐶 𝐷))
151, 2, 3, 4, 5, 10, 11legid 26525 . . . . . . 7 (𝜑 → (𝐴 𝐵) (𝐴 𝐵))
1615adantr 484 . . . . . 6 ((𝜑 ∧ (𝐴 𝐵) = (𝐶 𝐷)) → (𝐴 𝐵) (𝐴 𝐵))
17 simpr 488 . . . . . 6 ((𝜑 ∧ (𝐴 𝐵) = (𝐶 𝐷)) → (𝐴 𝐵) = (𝐶 𝐷))
1816, 17breqtrd 5053 . . . . 5 ((𝜑 ∧ (𝐴 𝐵) = (𝐶 𝐷)) → (𝐴 𝐵) (𝐶 𝐷))
1918adantlr 715 . . . 4 (((𝜑 ∧ (((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷)) ∨ (𝐴 𝐵) = (𝐶 𝐷))) ∧ (𝐴 𝐵) = (𝐶 𝐷)) → (𝐴 𝐵) (𝐶 𝐷))
20 simpr 488 . . . 4 ((𝜑 ∧ (((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷)) ∨ (𝐴 𝐵) = (𝐶 𝐷))) → (((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷)) ∨ (𝐴 𝐵) = (𝐶 𝐷)))
2114, 19, 20mpjaodan 958 . . 3 ((𝜑 ∧ (((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷)) ∨ (𝐴 𝐵) = (𝐶 𝐷))) → (𝐴 𝐵) (𝐶 𝐷))
22 simplr 769 . . . . . . 7 (((𝜑 ∧ (𝐴 𝐵) (𝐶 𝐷)) ∧ ¬ (𝐴 𝐵) = (𝐶 𝐷)) → (𝐴 𝐵) (𝐶 𝐷))
23 simpr 488 . . . . . . . 8 (((𝜑 ∧ (𝐴 𝐵) (𝐶 𝐷)) ∧ ¬ (𝐴 𝐵) = (𝐶 𝐷)) → ¬ (𝐴 𝐵) = (𝐶 𝐷))
2423neqned 2941 . . . . . . 7 (((𝜑 ∧ (𝐴 𝐵) (𝐶 𝐷)) ∧ ¬ (𝐴 𝐵) = (𝐶 𝐷)) → (𝐴 𝐵) ≠ (𝐶 𝐷))
2522, 24jca 515 . . . . . 6 (((𝜑 ∧ (𝐴 𝐵) (𝐶 𝐷)) ∧ ¬ (𝐴 𝐵) = (𝐶 𝐷)) → ((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷)))
2625ex 416 . . . . 5 ((𝜑 ∧ (𝐴 𝐵) (𝐶 𝐷)) → (¬ (𝐴 𝐵) = (𝐶 𝐷) → ((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷))))
2726orrd 862 . . . 4 ((𝜑 ∧ (𝐴 𝐵) (𝐶 𝐷)) → ((𝐴 𝐵) = (𝐶 𝐷) ∨ ((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷))))
2827orcomd 870 . . 3 ((𝜑 ∧ (𝐴 𝐵) (𝐶 𝐷)) → (((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷)) ∨ (𝐴 𝐵) = (𝐶 𝐷)))
2921, 28impbida 801 . 2 (𝜑 → ((((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷)) ∨ (𝐴 𝐵) = (𝐶 𝐷)) ↔ (𝐴 𝐵) (𝐶 𝐷)))
3013, 29bitr2d 283 1 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ((𝐴 𝐵) < (𝐶 𝐷) ∨ (𝐴 𝐵) = (𝐶 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 846   = wceq 1542  wcel 2113  wne 2934  cdif 3838  wss 3841   class class class wbr 5027   I cid 5424   × cxp 5517  dom cdm 5519  cres 5521  cima 5522  Fun wfun 6327  cfv 6333  (class class class)co 7164  Basecbs 16579  distcds 16670  TarskiGcstrkg 26368  Itvcitv 26374  ≤Gcleg 26520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-oadd 8128  df-er 8313  df-pm 8433  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-dju 9396  df-card 9434  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-3 11773  df-n0 11970  df-xnn0 12042  df-z 12056  df-uz 12318  df-fz 12975  df-fzo 13118  df-hash 13776  df-word 13949  df-concat 14005  df-s1 14032  df-s2 14292  df-s3 14293  df-trkgc 26386  df-trkgb 26387  df-trkgcb 26388  df-trkg 26391  df-cgrg 26449  df-leg 26521
This theorem is referenced by:  legso  26537
  Copyright terms: Public domain W3C validator