Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > legov3 | Structured version Visualization version GIF version |
Description: An equivalent definition of the less-than relationship, from the strict relation. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
Ref | Expression |
---|---|
legval.p | ⊢ 𝑃 = (Base‘𝐺) |
legval.d | ⊢ − = (dist‘𝐺) |
legval.i | ⊢ 𝐼 = (Itv‘𝐺) |
legval.l | ⊢ ≤ = (≤G‘𝐺) |
legval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
legso.a | ⊢ 𝐸 = ( − “ (𝑃 × 𝑃)) |
legso.f | ⊢ (𝜑 → Fun − ) |
legso.l | ⊢ < = (( ≤ ↾ 𝐸) ∖ I ) |
legso.d | ⊢ (𝜑 → (𝑃 × 𝑃) ⊆ dom − ) |
ltgov.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ltgov.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
legov3 | ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) < (𝐶 − 𝐷) ∨ (𝐴 − 𝐵) = (𝐶 − 𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | legval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | legval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | legval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | legval.l | . . . 4 ⊢ ≤ = (≤G‘𝐺) | |
5 | legval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | legso.a | . . . 4 ⊢ 𝐸 = ( − “ (𝑃 × 𝑃)) | |
7 | legso.f | . . . 4 ⊢ (𝜑 → Fun − ) | |
8 | legso.l | . . . 4 ⊢ < = (( ≤ ↾ 𝐸) ∖ I ) | |
9 | legso.d | . . . 4 ⊢ (𝜑 → (𝑃 × 𝑃) ⊆ dom − ) | |
10 | ltgov.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
11 | ltgov.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | ltgov 26535 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) < (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)))) |
13 | 12 | orbi1d 916 | . 2 ⊢ (𝜑 → (((𝐴 − 𝐵) < (𝐶 − 𝐷) ∨ (𝐴 − 𝐵) = (𝐶 − 𝐷)) ↔ (((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)) ∨ (𝐴 − 𝐵) = (𝐶 − 𝐷)))) |
14 | simprl 771 | . . . 4 ⊢ (((𝜑 ∧ (((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)) ∨ (𝐴 − 𝐵) = (𝐶 − 𝐷))) ∧ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷))) → (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) | |
15 | 1, 2, 3, 4, 5, 10, 11 | legid 26525 | . . . . . . 7 ⊢ (𝜑 → (𝐴 − 𝐵) ≤ (𝐴 − 𝐵)) |
16 | 15 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 − 𝐵) = (𝐶 − 𝐷)) → (𝐴 − 𝐵) ≤ (𝐴 − 𝐵)) |
17 | simpr 488 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 − 𝐵) = (𝐶 − 𝐷)) → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | |
18 | 16, 17 | breqtrd 5053 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 − 𝐵) = (𝐶 − 𝐷)) → (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) |
19 | 18 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ (((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)) ∨ (𝐴 − 𝐵) = (𝐶 − 𝐷))) ∧ (𝐴 − 𝐵) = (𝐶 − 𝐷)) → (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) |
20 | simpr 488 | . . . 4 ⊢ ((𝜑 ∧ (((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)) ∨ (𝐴 − 𝐵) = (𝐶 − 𝐷))) → (((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)) ∨ (𝐴 − 𝐵) = (𝐶 − 𝐷))) | |
21 | 14, 19, 20 | mpjaodan 958 | . . 3 ⊢ ((𝜑 ∧ (((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)) ∨ (𝐴 − 𝐵) = (𝐶 − 𝐷))) → (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) |
22 | simplr 769 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) ∧ ¬ (𝐴 − 𝐵) = (𝐶 − 𝐷)) → (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) | |
23 | simpr 488 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) ∧ ¬ (𝐴 − 𝐵) = (𝐶 − 𝐷)) → ¬ (𝐴 − 𝐵) = (𝐶 − 𝐷)) | |
24 | 23 | neqned 2941 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) ∧ ¬ (𝐴 − 𝐵) = (𝐶 − 𝐷)) → (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)) |
25 | 22, 24 | jca 515 | . . . . . 6 ⊢ (((𝜑 ∧ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) ∧ ¬ (𝐴 − 𝐵) = (𝐶 − 𝐷)) → ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷))) |
26 | 25 | ex 416 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) → (¬ (𝐴 − 𝐵) = (𝐶 − 𝐷) → ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)))) |
27 | 26 | orrd 862 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) → ((𝐴 − 𝐵) = (𝐶 − 𝐷) ∨ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)))) |
28 | 27 | orcomd 870 | . . 3 ⊢ ((𝜑 ∧ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) → (((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)) ∨ (𝐴 − 𝐵) = (𝐶 − 𝐷))) |
29 | 21, 28 | impbida 801 | . 2 ⊢ (𝜑 → ((((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)) ∨ (𝐴 − 𝐵) = (𝐶 − 𝐷)) ↔ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷))) |
30 | 13, 29 | bitr2d 283 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) < (𝐶 − 𝐷) ∨ (𝐴 − 𝐵) = (𝐶 − 𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 846 = wceq 1542 ∈ wcel 2113 ≠ wne 2934 ∖ cdif 3838 ⊆ wss 3841 class class class wbr 5027 I cid 5424 × cxp 5517 dom cdm 5519 ↾ cres 5521 “ cima 5522 Fun wfun 6327 ‘cfv 6333 (class class class)co 7164 Basecbs 16579 distcds 16670 TarskiGcstrkg 26368 Itvcitv 26374 ≤Gcleg 26520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-1st 7707 df-2nd 7708 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-1o 8124 df-oadd 8128 df-er 8313 df-pm 8433 df-en 8549 df-dom 8550 df-sdom 8551 df-fin 8552 df-dju 9396 df-card 9434 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-nn 11710 df-2 11772 df-3 11773 df-n0 11970 df-xnn0 12042 df-z 12056 df-uz 12318 df-fz 12975 df-fzo 13118 df-hash 13776 df-word 13949 df-concat 14005 df-s1 14032 df-s2 14292 df-s3 14293 df-trkgc 26386 df-trkgb 26387 df-trkgcb 26388 df-trkg 26391 df-cgrg 26449 df-leg 26521 |
This theorem is referenced by: legso 26537 |
Copyright terms: Public domain | W3C validator |