| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > legov3 | Structured version Visualization version GIF version | ||
| Description: An equivalent definition of the less-than relationship, from the strict relation. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| legval.p | ⊢ 𝑃 = (Base‘𝐺) |
| legval.d | ⊢ − = (dist‘𝐺) |
| legval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| legval.l | ⊢ ≤ = (≤G‘𝐺) |
| legval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| legso.a | ⊢ 𝐸 = ( − “ (𝑃 × 𝑃)) |
| legso.f | ⊢ (𝜑 → Fun − ) |
| legso.l | ⊢ < = (( ≤ ↾ 𝐸) ∖ I ) |
| legso.d | ⊢ (𝜑 → (𝑃 × 𝑃) ⊆ dom − ) |
| ltgov.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| ltgov.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| legov3 | ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) < (𝐶 − 𝐷) ∨ (𝐴 − 𝐵) = (𝐶 − 𝐷)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | legval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | legval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 3 | legval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | legval.l | . . . 4 ⊢ ≤ = (≤G‘𝐺) | |
| 5 | legval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | legso.a | . . . 4 ⊢ 𝐸 = ( − “ (𝑃 × 𝑃)) | |
| 7 | legso.f | . . . 4 ⊢ (𝜑 → Fun − ) | |
| 8 | legso.l | . . . 4 ⊢ < = (( ≤ ↾ 𝐸) ∖ I ) | |
| 9 | legso.d | . . . 4 ⊢ (𝜑 → (𝑃 × 𝑃) ⊆ dom − ) | |
| 10 | ltgov.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 11 | ltgov.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | ltgov 28576 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) < (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)))) |
| 13 | 12 | orbi1d 916 | . 2 ⊢ (𝜑 → (((𝐴 − 𝐵) < (𝐶 − 𝐷) ∨ (𝐴 − 𝐵) = (𝐶 − 𝐷)) ↔ (((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)) ∨ (𝐴 − 𝐵) = (𝐶 − 𝐷)))) |
| 14 | simprl 770 | . . . 4 ⊢ (((𝜑 ∧ (((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)) ∨ (𝐴 − 𝐵) = (𝐶 − 𝐷))) ∧ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷))) → (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) | |
| 15 | 1, 2, 3, 4, 5, 10, 11 | legid 28566 | . . . . . . 7 ⊢ (𝜑 → (𝐴 − 𝐵) ≤ (𝐴 − 𝐵)) |
| 16 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 − 𝐵) = (𝐶 − 𝐷)) → (𝐴 − 𝐵) ≤ (𝐴 − 𝐵)) |
| 17 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 − 𝐵) = (𝐶 − 𝐷)) → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | |
| 18 | 16, 17 | breqtrd 5145 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 − 𝐵) = (𝐶 − 𝐷)) → (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) |
| 19 | 18 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ (((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)) ∨ (𝐴 − 𝐵) = (𝐶 − 𝐷))) ∧ (𝐴 − 𝐵) = (𝐶 − 𝐷)) → (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) |
| 20 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ (((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)) ∨ (𝐴 − 𝐵) = (𝐶 − 𝐷))) → (((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)) ∨ (𝐴 − 𝐵) = (𝐶 − 𝐷))) | |
| 21 | 14, 19, 20 | mpjaodan 960 | . . 3 ⊢ ((𝜑 ∧ (((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)) ∨ (𝐴 − 𝐵) = (𝐶 − 𝐷))) → (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) |
| 22 | simplr 768 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) ∧ ¬ (𝐴 − 𝐵) = (𝐶 − 𝐷)) → (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) | |
| 23 | simpr 484 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) ∧ ¬ (𝐴 − 𝐵) = (𝐶 − 𝐷)) → ¬ (𝐴 − 𝐵) = (𝐶 − 𝐷)) | |
| 24 | 23 | neqned 2939 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) ∧ ¬ (𝐴 − 𝐵) = (𝐶 − 𝐷)) → (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)) |
| 25 | 22, 24 | jca 511 | . . . . . 6 ⊢ (((𝜑 ∧ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) ∧ ¬ (𝐴 − 𝐵) = (𝐶 − 𝐷)) → ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷))) |
| 26 | 25 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) → (¬ (𝐴 − 𝐵) = (𝐶 − 𝐷) → ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)))) |
| 27 | 26 | orrd 863 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) → ((𝐴 − 𝐵) = (𝐶 − 𝐷) ∨ ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)))) |
| 28 | 27 | orcomd 871 | . . 3 ⊢ ((𝜑 ∧ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷)) → (((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)) ∨ (𝐴 − 𝐵) = (𝐶 − 𝐷))) |
| 29 | 21, 28 | impbida 800 | . 2 ⊢ (𝜑 → ((((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ∧ (𝐴 − 𝐵) ≠ (𝐶 − 𝐷)) ∨ (𝐴 − 𝐵) = (𝐶 − 𝐷)) ↔ (𝐴 − 𝐵) ≤ (𝐶 − 𝐷))) |
| 30 | 13, 29 | bitr2d 280 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) ≤ (𝐶 − 𝐷) ↔ ((𝐴 − 𝐵) < (𝐶 − 𝐷) ∨ (𝐴 − 𝐵) = (𝐶 − 𝐷)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 ⊆ wss 3926 class class class wbr 5119 I cid 5547 × cxp 5652 dom cdm 5654 ↾ cres 5656 “ cima 5657 Fun wfun 6525 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 distcds 17280 TarskiGcstrkg 28406 Itvcitv 28412 ≤Gcleg 28561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8719 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-concat 14589 df-s1 14614 df-s2 14867 df-s3 14868 df-trkgc 28427 df-trkgb 28428 df-trkgcb 28429 df-trkg 28432 df-cgrg 28490 df-leg 28562 |
| This theorem is referenced by: legso 28578 |
| Copyright terms: Public domain | W3C validator |