MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legov3 Structured version   Visualization version   GIF version

Theorem legov3 28547
Description: An equivalent definition of the less-than relationship, from the strict relation. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legso.a 𝐸 = ( “ (𝑃 × 𝑃))
legso.f (𝜑 → Fun )
legso.l < = (( 𝐸) ∖ I )
legso.d (𝜑 → (𝑃 × 𝑃) ⊆ dom )
ltgov.a (𝜑𝐴𝑃)
ltgov.b (𝜑𝐵𝑃)
Assertion
Ref Expression
legov3 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ((𝐴 𝐵) < (𝐶 𝐷) ∨ (𝐴 𝐵) = (𝐶 𝐷))))

Proof of Theorem legov3
StepHypRef Expression
1 legval.p . . . 4 𝑃 = (Base‘𝐺)
2 legval.d . . . 4 = (dist‘𝐺)
3 legval.i . . . 4 𝐼 = (Itv‘𝐺)
4 legval.l . . . 4 = (≤G‘𝐺)
5 legval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
6 legso.a . . . 4 𝐸 = ( “ (𝑃 × 𝑃))
7 legso.f . . . 4 (𝜑 → Fun )
8 legso.l . . . 4 < = (( 𝐸) ∖ I )
9 legso.d . . . 4 (𝜑 → (𝑃 × 𝑃) ⊆ dom )
10 ltgov.a . . . 4 (𝜑𝐴𝑃)
11 ltgov.b . . . 4 (𝜑𝐵𝑃)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ltgov 28546 . . 3 (𝜑 → ((𝐴 𝐵) < (𝐶 𝐷) ↔ ((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷))))
1312orbi1d 916 . 2 (𝜑 → (((𝐴 𝐵) < (𝐶 𝐷) ∨ (𝐴 𝐵) = (𝐶 𝐷)) ↔ (((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷)) ∨ (𝐴 𝐵) = (𝐶 𝐷))))
14 simprl 770 . . . 4 (((𝜑 ∧ (((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷)) ∨ (𝐴 𝐵) = (𝐶 𝐷))) ∧ ((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷))) → (𝐴 𝐵) (𝐶 𝐷))
151, 2, 3, 4, 5, 10, 11legid 28536 . . . . . . 7 (𝜑 → (𝐴 𝐵) (𝐴 𝐵))
1615adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 𝐵) = (𝐶 𝐷)) → (𝐴 𝐵) (𝐴 𝐵))
17 simpr 484 . . . . . 6 ((𝜑 ∧ (𝐴 𝐵) = (𝐶 𝐷)) → (𝐴 𝐵) = (𝐶 𝐷))
1816, 17breqtrd 5118 . . . . 5 ((𝜑 ∧ (𝐴 𝐵) = (𝐶 𝐷)) → (𝐴 𝐵) (𝐶 𝐷))
1918adantlr 715 . . . 4 (((𝜑 ∧ (((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷)) ∨ (𝐴 𝐵) = (𝐶 𝐷))) ∧ (𝐴 𝐵) = (𝐶 𝐷)) → (𝐴 𝐵) (𝐶 𝐷))
20 simpr 484 . . . 4 ((𝜑 ∧ (((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷)) ∨ (𝐴 𝐵) = (𝐶 𝐷))) → (((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷)) ∨ (𝐴 𝐵) = (𝐶 𝐷)))
2114, 19, 20mpjaodan 960 . . 3 ((𝜑 ∧ (((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷)) ∨ (𝐴 𝐵) = (𝐶 𝐷))) → (𝐴 𝐵) (𝐶 𝐷))
22 simplr 768 . . . . . . 7 (((𝜑 ∧ (𝐴 𝐵) (𝐶 𝐷)) ∧ ¬ (𝐴 𝐵) = (𝐶 𝐷)) → (𝐴 𝐵) (𝐶 𝐷))
23 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝐴 𝐵) (𝐶 𝐷)) ∧ ¬ (𝐴 𝐵) = (𝐶 𝐷)) → ¬ (𝐴 𝐵) = (𝐶 𝐷))
2423neqned 2932 . . . . . . 7 (((𝜑 ∧ (𝐴 𝐵) (𝐶 𝐷)) ∧ ¬ (𝐴 𝐵) = (𝐶 𝐷)) → (𝐴 𝐵) ≠ (𝐶 𝐷))
2522, 24jca 511 . . . . . 6 (((𝜑 ∧ (𝐴 𝐵) (𝐶 𝐷)) ∧ ¬ (𝐴 𝐵) = (𝐶 𝐷)) → ((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷)))
2625ex 412 . . . . 5 ((𝜑 ∧ (𝐴 𝐵) (𝐶 𝐷)) → (¬ (𝐴 𝐵) = (𝐶 𝐷) → ((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷))))
2726orrd 863 . . . 4 ((𝜑 ∧ (𝐴 𝐵) (𝐶 𝐷)) → ((𝐴 𝐵) = (𝐶 𝐷) ∨ ((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷))))
2827orcomd 871 . . 3 ((𝜑 ∧ (𝐴 𝐵) (𝐶 𝐷)) → (((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷)) ∨ (𝐴 𝐵) = (𝐶 𝐷)))
2921, 28impbida 800 . 2 (𝜑 → ((((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷)) ∨ (𝐴 𝐵) = (𝐶 𝐷)) ↔ (𝐴 𝐵) (𝐶 𝐷)))
3013, 29bitr2d 280 1 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ((𝐴 𝐵) < (𝐶 𝐷) ∨ (𝐴 𝐵) = (𝐶 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  cdif 3900  wss 3903   class class class wbr 5092   I cid 5513   × cxp 5617  dom cdm 5619  cres 5621  cima 5622  Fun wfun 6476  cfv 6482  (class class class)co 7349  Basecbs 17120  distcds 17170  TarskiGcstrkg 28376  Itvcitv 28382  ≤Gcleg 28531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503  df-s2 14755  df-s3 14756  df-trkgc 28397  df-trkgb 28398  df-trkgcb 28399  df-trkg 28402  df-cgrg 28460  df-leg 28532
This theorem is referenced by:  legso  28548
  Copyright terms: Public domain W3C validator