Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrnbtwn Structured version   Visualization version   GIF version

Theorem cvrnbtwn 39271
Description: There is no element between the two arguments of the covers relation. (cvnbtwn 32222 analog.) (Contributed by NM, 18-Oct-2011.)
Hypotheses
Ref Expression
cvrfval.b 𝐵 = (Base‘𝐾)
cvrfval.s < = (lt‘𝐾)
cvrfval.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrnbtwn ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍𝑍 < 𝑌))

Proof of Theorem cvrnbtwn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cvrfval.b . . . . 5 𝐵 = (Base‘𝐾)
2 cvrfval.s . . . . 5 < = (lt‘𝐾)
3 cvrfval.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrval 39269 . . . 4 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
543adant3r3 1185 . . 3 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
6 ralnex 3056 . . . . . . 7 (∀𝑧𝐵 ¬ (𝑋 < 𝑧𝑧 < 𝑌) ↔ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))
7 breq2 5114 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑋 < 𝑧𝑋 < 𝑍))
8 breq1 5113 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑧 < 𝑌𝑍 < 𝑌))
97, 8anbi12d 632 . . . . . . . . 9 (𝑧 = 𝑍 → ((𝑋 < 𝑧𝑧 < 𝑌) ↔ (𝑋 < 𝑍𝑍 < 𝑌)))
109notbid 318 . . . . . . . 8 (𝑧 = 𝑍 → (¬ (𝑋 < 𝑧𝑧 < 𝑌) ↔ ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
1110rspcv 3587 . . . . . . 7 (𝑍𝐵 → (∀𝑧𝐵 ¬ (𝑋 < 𝑧𝑧 < 𝑌) → ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
126, 11biimtrrid 243 . . . . . 6 (𝑍𝐵 → (¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌) → ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
1312adantld 490 . . . . 5 (𝑍𝐵 → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
14133ad2ant3 1135 . . . 4 ((𝑋𝐵𝑌𝐵𝑍𝐵) → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
1514adantl 481 . . 3 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
165, 15sylbid 240 . 2 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌 → ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
17163impia 1117 1 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍𝑍 < 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054   class class class wbr 5110  cfv 6514  Basecbs 17186  ltcplt 18276  ccvr 39262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-covers 39266
This theorem is referenced by:  cvrnbtwn2  39275  cvrnbtwn3  39276  cvrnbtwn4  39279  ltltncvr  39424
  Copyright terms: Public domain W3C validator