Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrnbtwn Structured version   Visualization version   GIF version

Theorem cvrnbtwn 39264
Description: There is no element between the two arguments of the covers relation. (cvnbtwn 32215 analog.) (Contributed by NM, 18-Oct-2011.)
Hypotheses
Ref Expression
cvrfval.b 𝐵 = (Base‘𝐾)
cvrfval.s < = (lt‘𝐾)
cvrfval.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrnbtwn ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍𝑍 < 𝑌))

Proof of Theorem cvrnbtwn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cvrfval.b . . . . 5 𝐵 = (Base‘𝐾)
2 cvrfval.s . . . . 5 < = (lt‘𝐾)
3 cvrfval.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrval 39262 . . . 4 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
543adant3r3 1185 . . 3 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
6 ralnex 3055 . . . . . . 7 (∀𝑧𝐵 ¬ (𝑋 < 𝑧𝑧 < 𝑌) ↔ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))
7 breq2 5111 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑋 < 𝑧𝑋 < 𝑍))
8 breq1 5110 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑧 < 𝑌𝑍 < 𝑌))
97, 8anbi12d 632 . . . . . . . . 9 (𝑧 = 𝑍 → ((𝑋 < 𝑧𝑧 < 𝑌) ↔ (𝑋 < 𝑍𝑍 < 𝑌)))
109notbid 318 . . . . . . . 8 (𝑧 = 𝑍 → (¬ (𝑋 < 𝑧𝑧 < 𝑌) ↔ ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
1110rspcv 3584 . . . . . . 7 (𝑍𝐵 → (∀𝑧𝐵 ¬ (𝑋 < 𝑧𝑧 < 𝑌) → ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
126, 11biimtrrid 243 . . . . . 6 (𝑍𝐵 → (¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌) → ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
1312adantld 490 . . . . 5 (𝑍𝐵 → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
14133ad2ant3 1135 . . . 4 ((𝑋𝐵𝑌𝐵𝑍𝐵) → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
1514adantl 481 . . 3 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
165, 15sylbid 240 . 2 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌 → ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
17163impia 1117 1 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍𝑍 < 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5107  cfv 6511  Basecbs 17179  ltcplt 18269  ccvr 39255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-covers 39259
This theorem is referenced by:  cvrnbtwn2  39268  cvrnbtwn3  39269  cvrnbtwn4  39272  ltltncvr  39417
  Copyright terms: Public domain W3C validator