Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrnbtwn | Structured version Visualization version GIF version |
Description: There is no element between the two arguments of the covers relation. (cvnbtwn 30213 analog.) (Contributed by NM, 18-Oct-2011.) |
Ref | Expression |
---|---|
cvrfval.b | ⊢ 𝐵 = (Base‘𝐾) |
cvrfval.s | ⊢ < = (lt‘𝐾) |
cvrfval.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
Ref | Expression |
---|---|
cvrnbtwn | ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvrfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cvrfval.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
3 | cvrfval.c | . . . . 5 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
4 | 1, 2, 3 | cvrval 36895 | . . . 4 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) |
5 | 4 | 3adant3r3 1185 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) |
6 | ralnex 3148 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝐵 ¬ (𝑋 < 𝑧 ∧ 𝑧 < 𝑌) ↔ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)) | |
7 | breq2 5031 | . . . . . . . . . 10 ⊢ (𝑧 = 𝑍 → (𝑋 < 𝑧 ↔ 𝑋 < 𝑍)) | |
8 | breq1 5030 | . . . . . . . . . 10 ⊢ (𝑧 = 𝑍 → (𝑧 < 𝑌 ↔ 𝑍 < 𝑌)) | |
9 | 7, 8 | anbi12d 634 | . . . . . . . . 9 ⊢ (𝑧 = 𝑍 → ((𝑋 < 𝑧 ∧ 𝑧 < 𝑌) ↔ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
10 | 9 | notbid 321 | . . . . . . . 8 ⊢ (𝑧 = 𝑍 → (¬ (𝑋 < 𝑧 ∧ 𝑧 < 𝑌) ↔ ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
11 | 10 | rspcv 3519 | . . . . . . 7 ⊢ (𝑍 ∈ 𝐵 → (∀𝑧 ∈ 𝐵 ¬ (𝑋 < 𝑧 ∧ 𝑧 < 𝑌) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
12 | 6, 11 | syl5bir 246 | . . . . . 6 ⊢ (𝑍 ∈ 𝐵 → (¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
13 | 12 | adantld 494 | . . . . 5 ⊢ (𝑍 ∈ 𝐵 → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
14 | 13 | 3ad2ant3 1136 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
15 | 14 | adantl 485 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
16 | 5, 15 | sylbid 243 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋𝐶𝑌 → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
17 | 16 | 3impia 1118 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2113 ∀wral 3053 ∃wrex 3054 class class class wbr 5027 ‘cfv 6333 Basecbs 16579 ltcplt 17660 ⋖ ccvr 36888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-sbc 3680 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-iota 6291 df-fun 6335 df-fv 6341 df-covers 36892 |
This theorem is referenced by: cvrnbtwn2 36901 cvrnbtwn3 36902 cvrnbtwn4 36905 ltltncvr 37049 |
Copyright terms: Public domain | W3C validator |