Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrnbtwn Structured version   Visualization version   GIF version

Theorem cvrnbtwn 38136
Description: There is no element between the two arguments of the covers relation. (cvnbtwn 31534 analog.) (Contributed by NM, 18-Oct-2011.)
Hypotheses
Ref Expression
cvrfval.b 𝐵 = (Base‘𝐾)
cvrfval.s < = (lt‘𝐾)
cvrfval.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrnbtwn ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍𝑍 < 𝑌))

Proof of Theorem cvrnbtwn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cvrfval.b . . . . 5 𝐵 = (Base‘𝐾)
2 cvrfval.s . . . . 5 < = (lt‘𝐾)
3 cvrfval.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrval 38134 . . . 4 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
543adant3r3 1184 . . 3 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
6 ralnex 3072 . . . . . . 7 (∀𝑧𝐵 ¬ (𝑋 < 𝑧𝑧 < 𝑌) ↔ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))
7 breq2 5152 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑋 < 𝑧𝑋 < 𝑍))
8 breq1 5151 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑧 < 𝑌𝑍 < 𝑌))
97, 8anbi12d 631 . . . . . . . . 9 (𝑧 = 𝑍 → ((𝑋 < 𝑧𝑧 < 𝑌) ↔ (𝑋 < 𝑍𝑍 < 𝑌)))
109notbid 317 . . . . . . . 8 (𝑧 = 𝑍 → (¬ (𝑋 < 𝑧𝑧 < 𝑌) ↔ ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
1110rspcv 3608 . . . . . . 7 (𝑍𝐵 → (∀𝑧𝐵 ¬ (𝑋 < 𝑧𝑧 < 𝑌) → ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
126, 11biimtrrid 242 . . . . . 6 (𝑍𝐵 → (¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌) → ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
1312adantld 491 . . . . 5 (𝑍𝐵 → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
14133ad2ant3 1135 . . . 4 ((𝑋𝐵𝑌𝐵𝑍𝐵) → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
1514adantl 482 . . 3 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
165, 15sylbid 239 . 2 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌 → ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
17163impia 1117 1 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍𝑍 < 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  wrex 3070   class class class wbr 5148  cfv 6543  Basecbs 17143  ltcplt 18260  ccvr 38127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-covers 38131
This theorem is referenced by:  cvrnbtwn2  38140  cvrnbtwn3  38141  cvrnbtwn4  38144  ltltncvr  38289
  Copyright terms: Public domain W3C validator