Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrnbtwn | Structured version Visualization version GIF version |
Description: There is no element between the two arguments of the covers relation. (cvnbtwn 30648 analog.) (Contributed by NM, 18-Oct-2011.) |
Ref | Expression |
---|---|
cvrfval.b | ⊢ 𝐵 = (Base‘𝐾) |
cvrfval.s | ⊢ < = (lt‘𝐾) |
cvrfval.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
Ref | Expression |
---|---|
cvrnbtwn | ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvrfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cvrfval.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
3 | cvrfval.c | . . . . 5 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
4 | 1, 2, 3 | cvrval 37283 | . . . 4 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) |
5 | 4 | 3adant3r3 1183 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) |
6 | ralnex 3167 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝐵 ¬ (𝑋 < 𝑧 ∧ 𝑧 < 𝑌) ↔ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)) | |
7 | breq2 5078 | . . . . . . . . . 10 ⊢ (𝑧 = 𝑍 → (𝑋 < 𝑧 ↔ 𝑋 < 𝑍)) | |
8 | breq1 5077 | . . . . . . . . . 10 ⊢ (𝑧 = 𝑍 → (𝑧 < 𝑌 ↔ 𝑍 < 𝑌)) | |
9 | 7, 8 | anbi12d 631 | . . . . . . . . 9 ⊢ (𝑧 = 𝑍 → ((𝑋 < 𝑧 ∧ 𝑧 < 𝑌) ↔ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
10 | 9 | notbid 318 | . . . . . . . 8 ⊢ (𝑧 = 𝑍 → (¬ (𝑋 < 𝑧 ∧ 𝑧 < 𝑌) ↔ ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
11 | 10 | rspcv 3557 | . . . . . . 7 ⊢ (𝑍 ∈ 𝐵 → (∀𝑧 ∈ 𝐵 ¬ (𝑋 < 𝑧 ∧ 𝑧 < 𝑌) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
12 | 6, 11 | syl5bir 242 | . . . . . 6 ⊢ (𝑍 ∈ 𝐵 → (¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
13 | 12 | adantld 491 | . . . . 5 ⊢ (𝑍 ∈ 𝐵 → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
14 | 13 | 3ad2ant3 1134 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
15 | 14 | adantl 482 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
16 | 5, 15 | sylbid 239 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋𝐶𝑌 → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
17 | 16 | 3impia 1116 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 class class class wbr 5074 ‘cfv 6433 Basecbs 16912 ltcplt 18026 ⋖ ccvr 37276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-covers 37280 |
This theorem is referenced by: cvrnbtwn2 37289 cvrnbtwn3 37290 cvrnbtwn4 37293 ltltncvr 37437 |
Copyright terms: Public domain | W3C validator |