![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrnbtwn | Structured version Visualization version GIF version |
Description: There is no element between the two arguments of the covers relation. (cvnbtwn 32124 analog.) (Contributed by NM, 18-Oct-2011.) |
Ref | Expression |
---|---|
cvrfval.b | ⊢ 𝐵 = (Base‘𝐾) |
cvrfval.s | ⊢ < = (lt‘𝐾) |
cvrfval.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
Ref | Expression |
---|---|
cvrnbtwn | ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvrfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cvrfval.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
3 | cvrfval.c | . . . . 5 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
4 | 1, 2, 3 | cvrval 38781 | . . . 4 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) |
5 | 4 | 3adant3r3 1181 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) |
6 | ralnex 3069 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝐵 ¬ (𝑋 < 𝑧 ∧ 𝑧 < 𝑌) ↔ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)) | |
7 | breq2 5156 | . . . . . . . . . 10 ⊢ (𝑧 = 𝑍 → (𝑋 < 𝑧 ↔ 𝑋 < 𝑍)) | |
8 | breq1 5155 | . . . . . . . . . 10 ⊢ (𝑧 = 𝑍 → (𝑧 < 𝑌 ↔ 𝑍 < 𝑌)) | |
9 | 7, 8 | anbi12d 630 | . . . . . . . . 9 ⊢ (𝑧 = 𝑍 → ((𝑋 < 𝑧 ∧ 𝑧 < 𝑌) ↔ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
10 | 9 | notbid 317 | . . . . . . . 8 ⊢ (𝑧 = 𝑍 → (¬ (𝑋 < 𝑧 ∧ 𝑧 < 𝑌) ↔ ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
11 | 10 | rspcv 3607 | . . . . . . 7 ⊢ (𝑍 ∈ 𝐵 → (∀𝑧 ∈ 𝐵 ¬ (𝑋 < 𝑧 ∧ 𝑧 < 𝑌) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
12 | 6, 11 | biimtrrid 242 | . . . . . 6 ⊢ (𝑍 ∈ 𝐵 → (¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
13 | 12 | adantld 489 | . . . . 5 ⊢ (𝑍 ∈ 𝐵 → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
14 | 13 | 3ad2ant3 1132 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
15 | 14 | adantl 480 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
16 | 5, 15 | sylbid 239 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋𝐶𝑌 → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
17 | 16 | 3impia 1114 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3058 ∃wrex 3067 class class class wbr 5152 ‘cfv 6553 Basecbs 17189 ltcplt 18309 ⋖ ccvr 38774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6505 df-fun 6555 df-fv 6561 df-covers 38778 |
This theorem is referenced by: cvrnbtwn2 38787 cvrnbtwn3 38788 cvrnbtwn4 38791 ltltncvr 38936 |
Copyright terms: Public domain | W3C validator |