| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrnbtwn | Structured version Visualization version GIF version | ||
| Description: There is no element between the two arguments of the covers relation. (cvnbtwn 32188 analog.) (Contributed by NM, 18-Oct-2011.) |
| Ref | Expression |
|---|---|
| cvrfval.b | ⊢ 𝐵 = (Base‘𝐾) |
| cvrfval.s | ⊢ < = (lt‘𝐾) |
| cvrfval.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| Ref | Expression |
|---|---|
| cvrnbtwn | ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cvrfval.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
| 3 | cvrfval.c | . . . . 5 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 4 | 1, 2, 3 | cvrval 39235 | . . . 4 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) |
| 5 | 4 | 3adant3r3 1185 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) |
| 6 | ralnex 3055 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝐵 ¬ (𝑋 < 𝑧 ∧ 𝑧 < 𝑌) ↔ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)) | |
| 7 | breq2 5106 | . . . . . . . . . 10 ⊢ (𝑧 = 𝑍 → (𝑋 < 𝑧 ↔ 𝑋 < 𝑍)) | |
| 8 | breq1 5105 | . . . . . . . . . 10 ⊢ (𝑧 = 𝑍 → (𝑧 < 𝑌 ↔ 𝑍 < 𝑌)) | |
| 9 | 7, 8 | anbi12d 632 | . . . . . . . . 9 ⊢ (𝑧 = 𝑍 → ((𝑋 < 𝑧 ∧ 𝑧 < 𝑌) ↔ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
| 10 | 9 | notbid 318 | . . . . . . . 8 ⊢ (𝑧 = 𝑍 → (¬ (𝑋 < 𝑧 ∧ 𝑧 < 𝑌) ↔ ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
| 11 | 10 | rspcv 3581 | . . . . . . 7 ⊢ (𝑍 ∈ 𝐵 → (∀𝑧 ∈ 𝐵 ¬ (𝑋 < 𝑧 ∧ 𝑧 < 𝑌) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
| 12 | 6, 11 | biimtrrid 243 | . . . . . 6 ⊢ (𝑍 ∈ 𝐵 → (¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
| 13 | 12 | adantld 490 | . . . . 5 ⊢ (𝑍 ∈ 𝐵 → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
| 14 | 13 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
| 15 | 14 | adantl 481 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
| 16 | 5, 15 | sylbid 240 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋𝐶𝑌 → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
| 17 | 16 | 3impia 1117 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5102 ‘cfv 6499 Basecbs 17155 ltcplt 18245 ⋖ ccvr 39228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-covers 39232 |
| This theorem is referenced by: cvrnbtwn2 39241 cvrnbtwn3 39242 cvrnbtwn4 39245 ltltncvr 39390 |
| Copyright terms: Public domain | W3C validator |