| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrnbtwn | Structured version Visualization version GIF version | ||
| Description: There is no element between the two arguments of the covers relation. (cvnbtwn 32222 analog.) (Contributed by NM, 18-Oct-2011.) |
| Ref | Expression |
|---|---|
| cvrfval.b | ⊢ 𝐵 = (Base‘𝐾) |
| cvrfval.s | ⊢ < = (lt‘𝐾) |
| cvrfval.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| Ref | Expression |
|---|---|
| cvrnbtwn | ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cvrfval.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
| 3 | cvrfval.c | . . . . 5 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 4 | 1, 2, 3 | cvrval 39269 | . . . 4 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) |
| 5 | 4 | 3adant3r3 1185 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) |
| 6 | ralnex 3056 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝐵 ¬ (𝑋 < 𝑧 ∧ 𝑧 < 𝑌) ↔ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)) | |
| 7 | breq2 5114 | . . . . . . . . . 10 ⊢ (𝑧 = 𝑍 → (𝑋 < 𝑧 ↔ 𝑋 < 𝑍)) | |
| 8 | breq1 5113 | . . . . . . . . . 10 ⊢ (𝑧 = 𝑍 → (𝑧 < 𝑌 ↔ 𝑍 < 𝑌)) | |
| 9 | 7, 8 | anbi12d 632 | . . . . . . . . 9 ⊢ (𝑧 = 𝑍 → ((𝑋 < 𝑧 ∧ 𝑧 < 𝑌) ↔ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
| 10 | 9 | notbid 318 | . . . . . . . 8 ⊢ (𝑧 = 𝑍 → (¬ (𝑋 < 𝑧 ∧ 𝑧 < 𝑌) ↔ ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
| 11 | 10 | rspcv 3587 | . . . . . . 7 ⊢ (𝑍 ∈ 𝐵 → (∀𝑧 ∈ 𝐵 ¬ (𝑋 < 𝑧 ∧ 𝑧 < 𝑌) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
| 12 | 6, 11 | biimtrrid 243 | . . . . . 6 ⊢ (𝑍 ∈ 𝐵 → (¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
| 13 | 12 | adantld 490 | . . . . 5 ⊢ (𝑍 ∈ 𝐵 → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
| 14 | 13 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
| 15 | 14 | adantl 481 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
| 16 | 5, 15 | sylbid 240 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋𝐶𝑌 → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌))) |
| 17 | 16 | 3impia 1117 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 class class class wbr 5110 ‘cfv 6514 Basecbs 17186 ltcplt 18276 ⋖ ccvr 39262 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-covers 39266 |
| This theorem is referenced by: cvrnbtwn2 39275 cvrnbtwn3 39276 cvrnbtwn4 39279 ltltncvr 39424 |
| Copyright terms: Public domain | W3C validator |