| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltnelicc | Structured version Visualization version GIF version | ||
| Description: A real number smaller than the lower bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltnelicc.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltnelicc.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| ltnelicc.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| ltnelicc.clta | ⊢ (𝜑 → 𝐶 < 𝐴) |
| Ref | Expression |
|---|---|
| ltnelicc | ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnelicc.clta | . . . 4 ⊢ (𝜑 → 𝐶 < 𝐴) | |
| 2 | ltnelicc.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 3 | ltnelicc.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | 3 | rexrd 11293 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 5 | xrltnle 11310 | . . . . 5 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐶 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐶)) | |
| 6 | 2, 4, 5 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐶 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐶)) |
| 7 | 1, 6 | mpbid 232 | . . 3 ⊢ (𝜑 → ¬ 𝐴 ≤ 𝐶) |
| 8 | 7 | intnanrd 489 | . 2 ⊢ (𝜑 → ¬ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| 9 | ltnelicc.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 10 | elicc4 13436 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 11 | 4, 9, 2, 10 | syl3anc 1372 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| 12 | 8, 11 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 class class class wbr 5123 (class class class)co 7413 ℝcr 11136 ℝ*cxr 11276 < clt 11277 ≤ cle 11278 [,]cicc 13372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-xr 11281 df-le 11283 df-icc 13376 |
| This theorem is referenced by: fourierdlem104 46182 |
| Copyright terms: Public domain | W3C validator |