Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltnelicc Structured version   Visualization version   GIF version

Theorem ltnelicc 45488
Description: A real number smaller than the lower bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ltnelicc.a (𝜑𝐴 ∈ ℝ)
ltnelicc.b (𝜑𝐵 ∈ ℝ*)
ltnelicc.c (𝜑𝐶 ∈ ℝ*)
ltnelicc.clta (𝜑𝐶 < 𝐴)
Assertion
Ref Expression
ltnelicc (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵))

Proof of Theorem ltnelicc
StepHypRef Expression
1 ltnelicc.clta . . . 4 (𝜑𝐶 < 𝐴)
2 ltnelicc.c . . . . 5 (𝜑𝐶 ∈ ℝ*)
3 ltnelicc.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
43rexrd 11165 . . . . 5 (𝜑𝐴 ∈ ℝ*)
5 xrltnle 11182 . . . . 5 ((𝐶 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐶 < 𝐴 ↔ ¬ 𝐴𝐶))
62, 4, 5syl2anc 584 . . . 4 (𝜑 → (𝐶 < 𝐴 ↔ ¬ 𝐴𝐶))
71, 6mpbid 232 . . 3 (𝜑 → ¬ 𝐴𝐶)
87intnanrd 489 . 2 (𝜑 → ¬ (𝐴𝐶𝐶𝐵))
9 ltnelicc.b . . 3 (𝜑𝐵 ∈ ℝ*)
10 elicc4 13316 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
114, 9, 2, 10syl3anc 1373 . 2 (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
128, 11mtbird 325 1 (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5092  (class class class)co 7349  cr 11008  *cxr 11148   < clt 11149  cle 11150  [,]cicc 13251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-xr 11153  df-le 11155  df-icc 13255
This theorem is referenced by:  fourierdlem104  46201
  Copyright terms: Public domain W3C validator