Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltnelicc Structured version   Visualization version   GIF version

Theorem ltnelicc 45417
Description: A real number smaller than the lower bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ltnelicc.a (𝜑𝐴 ∈ ℝ)
ltnelicc.b (𝜑𝐵 ∈ ℝ*)
ltnelicc.c (𝜑𝐶 ∈ ℝ*)
ltnelicc.clta (𝜑𝐶 < 𝐴)
Assertion
Ref Expression
ltnelicc (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵))

Proof of Theorem ltnelicc
StepHypRef Expression
1 ltnelicc.clta . . . 4 (𝜑𝐶 < 𝐴)
2 ltnelicc.c . . . . 5 (𝜑𝐶 ∈ ℝ*)
3 ltnelicc.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
43rexrd 11342 . . . . 5 (𝜑𝐴 ∈ ℝ*)
5 xrltnle 11359 . . . . 5 ((𝐶 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐶 < 𝐴 ↔ ¬ 𝐴𝐶))
62, 4, 5syl2anc 583 . . . 4 (𝜑 → (𝐶 < 𝐴 ↔ ¬ 𝐴𝐶))
71, 6mpbid 232 . . 3 (𝜑 → ¬ 𝐴𝐶)
87intnanrd 489 . 2 (𝜑 → ¬ (𝐴𝐶𝐶𝐵))
9 ltnelicc.b . . 3 (𝜑𝐵 ∈ ℝ*)
10 elicc4 13476 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
114, 9, 2, 10syl3anc 1371 . 2 (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
128, 11mtbird 325 1 (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2108   class class class wbr 5166  (class class class)co 7450  cr 11185  *cxr 11325   < clt 11326  cle 11327  [,]cicc 13412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6527  df-fun 6577  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-xr 11330  df-le 11332  df-icc 13416
This theorem is referenced by:  fourierdlem104  46133
  Copyright terms: Public domain W3C validator