Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltnelicc Structured version   Visualization version   GIF version

Theorem ltnelicc 45467
Description: A real number smaller than the lower bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ltnelicc.a (𝜑𝐴 ∈ ℝ)
ltnelicc.b (𝜑𝐵 ∈ ℝ*)
ltnelicc.c (𝜑𝐶 ∈ ℝ*)
ltnelicc.clta (𝜑𝐶 < 𝐴)
Assertion
Ref Expression
ltnelicc (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵))

Proof of Theorem ltnelicc
StepHypRef Expression
1 ltnelicc.clta . . . 4 (𝜑𝐶 < 𝐴)
2 ltnelicc.c . . . . 5 (𝜑𝐶 ∈ ℝ*)
3 ltnelicc.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
43rexrd 11293 . . . . 5 (𝜑𝐴 ∈ ℝ*)
5 xrltnle 11310 . . . . 5 ((𝐶 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐶 < 𝐴 ↔ ¬ 𝐴𝐶))
62, 4, 5syl2anc 584 . . . 4 (𝜑 → (𝐶 < 𝐴 ↔ ¬ 𝐴𝐶))
71, 6mpbid 232 . . 3 (𝜑 → ¬ 𝐴𝐶)
87intnanrd 489 . 2 (𝜑 → ¬ (𝐴𝐶𝐶𝐵))
9 ltnelicc.b . . 3 (𝜑𝐵 ∈ ℝ*)
10 elicc4 13436 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
114, 9, 2, 10syl3anc 1372 . 2 (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
128, 11mtbird 325 1 (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2107   class class class wbr 5123  (class class class)co 7413  cr 11136  *cxr 11276   < clt 11277  cle 11278  [,]cicc 13372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-xr 11281  df-le 11283  df-icc 13376
This theorem is referenced by:  fourierdlem104  46182
  Copyright terms: Public domain W3C validator