![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltnelicc | Structured version Visualization version GIF version |
Description: A real number smaller than the lower bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ltnelicc.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnelicc.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
ltnelicc.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
ltnelicc.clta | ⊢ (𝜑 → 𝐶 < 𝐴) |
Ref | Expression |
---|---|
ltnelicc | ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltnelicc.clta | . . . 4 ⊢ (𝜑 → 𝐶 < 𝐴) | |
2 | ltnelicc.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
3 | ltnelicc.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | 3 | rexrd 11271 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
5 | xrltnle 11288 | . . . . 5 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐶 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐶)) | |
6 | 2, 4, 5 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐶 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐶)) |
7 | 1, 6 | mpbid 231 | . . 3 ⊢ (𝜑 → ¬ 𝐴 ≤ 𝐶) |
8 | 7 | intnanrd 489 | . 2 ⊢ (𝜑 → ¬ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
9 | ltnelicc.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
10 | elicc4 13398 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
11 | 4, 9, 2, 10 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
12 | 8, 11 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2105 class class class wbr 5148 (class class class)co 7412 ℝcr 11115 ℝ*cxr 11254 < clt 11255 ≤ cle 11256 [,]cicc 13334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-xr 11259 df-le 11261 df-icc 13338 |
This theorem is referenced by: fourierdlem104 45385 |
Copyright terms: Public domain | W3C validator |