| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliood | Structured version Visualization version GIF version | ||
| Description: Membership in an open real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| eliood.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| eliood.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| eliood.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| eliood.4 | ⊢ (𝜑 → 𝐴 < 𝐶) |
| eliood.5 | ⊢ (𝜑 → 𝐶 < 𝐵) |
| Ref | Expression |
|---|---|
| eliood | ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliood.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 2 | eliood.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐶) | |
| 3 | eliood.5 | . 2 ⊢ (𝜑 → 𝐶 < 𝐵) | |
| 4 | eliood.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 5 | eliood.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 6 | elioo2 13428 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
| 7 | 4, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| 8 | 1, 2, 3, 7 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) |
| Copyright terms: Public domain | W3C validator |