Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliood Structured version   Visualization version   GIF version

Theorem eliood 45511
Description: Membership in an open real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
eliood.1 (𝜑𝐴 ∈ ℝ*)
eliood.2 (𝜑𝐵 ∈ ℝ*)
eliood.3 (𝜑𝐶 ∈ ℝ)
eliood.4 (𝜑𝐴 < 𝐶)
eliood.5 (𝜑𝐶 < 𝐵)
Assertion
Ref Expression
eliood (𝜑𝐶 ∈ (𝐴(,)𝐵))

Proof of Theorem eliood
StepHypRef Expression
1 eliood.3 . 2 (𝜑𝐶 ∈ ℝ)
2 eliood.4 . 2 (𝜑𝐴 < 𝐶)
3 eliood.5 . 2 (𝜑𝐶 < 𝐵)
4 eliood.1 . . 3 (𝜑𝐴 ∈ ℝ*)
5 eliood.2 . . 3 (𝜑𝐵 ∈ ℝ*)
6 elioo2 13428 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵)))
74, 5, 6syl2anc 584 . 2 (𝜑 → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵)))
81, 2, 3, 7mpbir3and 1343 1 (𝜑𝐶 ∈ (𝐴(,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087  wcel 2108   class class class wbr 5143  (class class class)co 7431  cr 11154  *cxr 11294   < clt 11295  (,)cioo 13387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-ioo 13391
This theorem is referenced by:  ioomidp  45527  iocopn  45533  iooshift  45535  icoopn  45538  qinioo  45548  qelioo  45559  icomnfinre  45565  ressioosup  45568  ressiooinf  45570  uzubioo  45580  limciccioolb  45636  limcicciooub  45652  lptre2pt  45655  limcresiooub  45657  limcresioolb  45658  limcleqr  45659  xlimxrre  45846  cncfiooiccre  45910  dvbdfbdioolem2  45944  dvbdfbdioo  45945  ioodvbdlimc1lem1  45946  ioodvbdlimc1lem2  45947  ioodvbdlimc2lem  45949  itgioocnicc  45992  dirkercncflem1  46118  dirkercncflem4  46121  fourierdlem10  46132  fourierdlem20  46142  fourierdlem25  46147  fourierdlem27  46149  fourierdlem28  46150  fourierdlem31  46153  fourierdlem32  46154  fourierdlem33  46155  fourierdlem40  46162  fourierdlem41  46163  fourierdlem43  46165  fourierdlem44  46166  fourierdlem46  46167  fourierdlem48  46169  fourierdlem49  46170  fourierdlem57  46178  fourierdlem59  46180  fourierdlem60  46181  fourierdlem61  46182  fourierdlem62  46183  fourierdlem64  46185  fourierdlem68  46189  fourierdlem73  46194  fourierdlem74  46195  fourierdlem75  46196  fourierdlem76  46197  fourierdlem78  46199  fourierdlem81  46202  fourierdlem82  46203  fourierdlem84  46205  fourierdlem89  46210  fourierdlem90  46211  fourierdlem91  46212  fourierdlem92  46213  fourierdlem93  46214  fourierdlem97  46218  fourierdlem103  46224  fourierdlem104  46225  fourierdlem107  46228  fourierdlem109  46230  fourierdlem111  46232  fourierdlem112  46233  sqwvfourb  46244  fourierswlem  46245  fouriersw  46246  qndenserrnbllem  46309  ioorrnopnlem  46319  ioorrnopnxrlem  46321  hspdifhsp  46631  hspmbllem2  46642  pimiooltgt  46725  pimrecltneg  46739  smfresal  46803  smfmullem2  46807
  Copyright terms: Public domain W3C validator