Proof of Theorem evthiccabs
Step | Hyp | Ref
| Expression |
1 | | evthiccabs.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | | evthiccabs.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ ℝ) |
3 | | evthiccabs.aleb |
. . . . 5
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
4 | | ax-resscn 10928 |
. . . . . . . 8
⊢ ℝ
⊆ ℂ |
5 | | ssid 3943 |
. . . . . . . 8
⊢ ℂ
⊆ ℂ |
6 | | cncfss 24062 |
. . . . . . . 8
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ)) |
7 | 4, 5, 6 | mp2an 689 |
. . . . . . 7
⊢ ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ) |
8 | | evthiccabs.f |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
9 | 7, 8 | sselid 3919 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
10 | | abscncf 24064 |
. . . . . . 7
⊢ abs
∈ (ℂ–cn→ℝ) |
11 | 10 | a1i 11 |
. . . . . 6
⊢ (𝜑 → abs ∈
(ℂ–cn→ℝ)) |
12 | 9, 11 | cncfco 24070 |
. . . . 5
⊢ (𝜑 → (abs ∘ 𝐹) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
13 | 1, 2, 3, 12 | evthicc 24623 |
. . . 4
⊢ (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑦) ≤ ((abs ∘ 𝐹)‘𝑥) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑧) ≤ ((abs ∘ 𝐹)‘𝑤))) |
14 | 13 | simpld 495 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑦) ≤ ((abs ∘ 𝐹)‘𝑥)) |
15 | | cncff 24056 |
. . . . . . . . . 10
⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
16 | | ffun 6603 |
. . . . . . . . . 10
⊢ (𝐹:(𝐴[,]𝐵)⟶ℝ → Fun 𝐹) |
17 | 8, 15, 16 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → Fun 𝐹) |
18 | 17 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → Fun 𝐹) |
19 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵)) |
20 | | fdm 6609 |
. . . . . . . . . . . 12
⊢ (𝐹:(𝐴[,]𝐵)⟶ℝ → dom 𝐹 = (𝐴[,]𝐵)) |
21 | 8, 15, 20 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐹 = (𝐴[,]𝐵)) |
22 | 21 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴[,]𝐵) = dom 𝐹) |
23 | 22 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = dom 𝐹) |
24 | 19, 23 | eleqtrd 2841 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ dom 𝐹) |
25 | | fvco 6866 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹‘𝑦))) |
26 | 18, 24, 25 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹‘𝑦))) |
27 | 26 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹‘𝑦))) |
28 | 17 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → Fun 𝐹) |
29 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) |
30 | 22 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = dom 𝐹) |
31 | 29, 30 | eleqtrd 2841 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ dom 𝐹) |
32 | | fvco 6866 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ dom 𝐹) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹‘𝑥))) |
33 | 28, 31, 32 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹‘𝑥))) |
34 | 33 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹‘𝑥))) |
35 | 27, 34 | breq12d 5087 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((abs ∘ 𝐹)‘𝑦) ≤ ((abs ∘ 𝐹)‘𝑥) ↔ (abs‘(𝐹‘𝑦)) ≤ (abs‘(𝐹‘𝑥)))) |
36 | 35 | ralbidva 3111 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (∀𝑦 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑦) ≤ ((abs ∘ 𝐹)‘𝑥) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ (abs‘(𝐹‘𝑥)))) |
37 | 36 | rexbidva 3225 |
. . 3
⊢ (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑦) ≤ ((abs ∘ 𝐹)‘𝑥) ↔ ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ (abs‘(𝐹‘𝑥)))) |
38 | 14, 37 | mpbid 231 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ (abs‘(𝐹‘𝑥))) |
39 | 13 | simprd 496 |
. . 3
⊢ (𝜑 → ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑧) ≤ ((abs ∘ 𝐹)‘𝑤)) |
40 | 17 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → Fun 𝐹) |
41 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ (𝐴[,]𝐵)) |
42 | 22 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = dom 𝐹) |
43 | 41, 42 | eleqtrd 2841 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ dom 𝐹) |
44 | | fvco 6866 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ dom 𝐹) → ((abs ∘ 𝐹)‘𝑧) = (abs‘(𝐹‘𝑧))) |
45 | 40, 43, 44 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑧) = (abs‘(𝐹‘𝑧))) |
46 | 45 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) ∧ 𝑤 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑧) = (abs‘(𝐹‘𝑧))) |
47 | 17 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐴[,]𝐵)) → Fun 𝐹) |
48 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐴[,]𝐵)) → 𝑤 ∈ (𝐴[,]𝐵)) |
49 | 22 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = dom 𝐹) |
50 | 48, 49 | eleqtrd 2841 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐴[,]𝐵)) → 𝑤 ∈ dom 𝐹) |
51 | | fvco 6866 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑤 ∈ dom 𝐹) → ((abs ∘ 𝐹)‘𝑤) = (abs‘(𝐹‘𝑤))) |
52 | 47, 50, 51 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑤) = (abs‘(𝐹‘𝑤))) |
53 | 52 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) ∧ 𝑤 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑤) = (abs‘(𝐹‘𝑤))) |
54 | 46, 53 | breq12d 5087 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) ∧ 𝑤 ∈ (𝐴[,]𝐵)) → (((abs ∘ 𝐹)‘𝑧) ≤ ((abs ∘ 𝐹)‘𝑤) ↔ (abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑤)))) |
55 | 54 | ralbidva 3111 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (∀𝑤 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑧) ≤ ((abs ∘ 𝐹)‘𝑤) ↔ ∀𝑤 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑤)))) |
56 | 55 | rexbidva 3225 |
. . 3
⊢ (𝜑 → (∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑧) ≤ ((abs ∘ 𝐹)‘𝑤) ↔ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑤)))) |
57 | 39, 56 | mpbid 231 |
. 2
⊢ (𝜑 → ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑤))) |
58 | 38, 57 | jca 512 |
1
⊢ (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ (abs‘(𝐹‘𝑥)) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑤)))) |