Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evthiccabs Structured version   Visualization version   GIF version

Theorem evthiccabs 42128
 Description: Extreme Value Theorem on y closed interval, for the absolute value of y continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
evthiccabs.a (𝜑𝐴 ∈ ℝ)
evthiccabs.b (𝜑𝐵 ∈ ℝ)
evthiccabs.aleb (𝜑𝐴𝐵)
evthiccabs.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
Assertion
Ref Expression
evthiccabs (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑦)) ≤ (abs‘(𝐹𝑥)) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑤))))
Distinct variable groups:   𝑤,𝐴,𝑧   𝑥,𝐴,𝑦   𝑤,𝐵,𝑧   𝑥,𝐵,𝑦   𝑤,𝐹,𝑧   𝑥,𝐹,𝑦   𝜑,𝑤,𝑧   𝜑,𝑥,𝑦

Proof of Theorem evthiccabs
StepHypRef Expression
1 evthiccabs.a . . . . 5 (𝜑𝐴 ∈ ℝ)
2 evthiccabs.b . . . . 5 (𝜑𝐵 ∈ ℝ)
3 evthiccabs.aleb . . . . 5 (𝜑𝐴𝐵)
4 ax-resscn 10583 . . . . . . . 8 ℝ ⊆ ℂ
5 ssid 3937 . . . . . . . 8 ℂ ⊆ ℂ
6 cncfss 23504 . . . . . . . 8 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ))
74, 5, 6mp2an 691 . . . . . . 7 ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ)
8 evthiccabs.f . . . . . . 7 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
97, 8sseldi 3913 . . . . . 6 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
10 abscncf 23506 . . . . . . 7 abs ∈ (ℂ–cn→ℝ)
1110a1i 11 . . . . . 6 (𝜑 → abs ∈ (ℂ–cn→ℝ))
129, 11cncfco 23512 . . . . 5 (𝜑 → (abs ∘ 𝐹) ∈ ((𝐴[,]𝐵)–cn→ℝ))
131, 2, 3, 12evthicc 24063 . . . 4 (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑦) ≤ ((abs ∘ 𝐹)‘𝑥) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑧) ≤ ((abs ∘ 𝐹)‘𝑤)))
1413simpld 498 . . 3 (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑦) ≤ ((abs ∘ 𝐹)‘𝑥))
15 cncff 23498 . . . . . . . . . 10 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
16 ffun 6490 . . . . . . . . . 10 (𝐹:(𝐴[,]𝐵)⟶ℝ → Fun 𝐹)
178, 15, 163syl 18 . . . . . . . . 9 (𝜑 → Fun 𝐹)
1817adantr 484 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → Fun 𝐹)
19 simpr 488 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
20 fdm 6495 . . . . . . . . . . . 12 (𝐹:(𝐴[,]𝐵)⟶ℝ → dom 𝐹 = (𝐴[,]𝐵))
218, 15, 203syl 18 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = (𝐴[,]𝐵))
2221eqcomd 2804 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) = dom 𝐹)
2322adantr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = dom 𝐹)
2419, 23eleqtrd 2892 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ dom 𝐹)
25 fvco 6736 . . . . . . . 8 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹𝑦)))
2618, 24, 25syl2anc 587 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹𝑦)))
2726adantlr 714 . . . . . 6 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹𝑦)))
2817adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → Fun 𝐹)
29 simpr 488 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
3022adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = dom 𝐹)
3129, 30eleqtrd 2892 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ dom 𝐹)
32 fvco 6736 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹𝑥)))
3328, 31, 32syl2anc 587 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹𝑥)))
3433adantr 484 . . . . . 6 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹𝑥)))
3527, 34breq12d 5043 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((abs ∘ 𝐹)‘𝑦) ≤ ((abs ∘ 𝐹)‘𝑥) ↔ (abs‘(𝐹𝑦)) ≤ (abs‘(𝐹𝑥))))
3635ralbidva 3161 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (∀𝑦 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑦) ≤ ((abs ∘ 𝐹)‘𝑥) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑦)) ≤ (abs‘(𝐹𝑥))))
3736rexbidva 3255 . . 3 (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑦) ≤ ((abs ∘ 𝐹)‘𝑥) ↔ ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑦)) ≤ (abs‘(𝐹𝑥))))
3814, 37mpbid 235 . 2 (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑦)) ≤ (abs‘(𝐹𝑥)))
3913simprd 499 . . 3 (𝜑 → ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑧) ≤ ((abs ∘ 𝐹)‘𝑤))
4017adantr 484 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → Fun 𝐹)
41 simpr 488 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ (𝐴[,]𝐵))
4222adantr 484 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = dom 𝐹)
4341, 42eleqtrd 2892 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ dom 𝐹)
44 fvco 6736 . . . . . . . 8 ((Fun 𝐹𝑧 ∈ dom 𝐹) → ((abs ∘ 𝐹)‘𝑧) = (abs‘(𝐹𝑧)))
4540, 43, 44syl2anc 587 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑧) = (abs‘(𝐹𝑧)))
4645adantr 484 . . . . . 6 (((𝜑𝑧 ∈ (𝐴[,]𝐵)) ∧ 𝑤 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑧) = (abs‘(𝐹𝑧)))
4717adantr 484 . . . . . . . 8 ((𝜑𝑤 ∈ (𝐴[,]𝐵)) → Fun 𝐹)
48 simpr 488 . . . . . . . . 9 ((𝜑𝑤 ∈ (𝐴[,]𝐵)) → 𝑤 ∈ (𝐴[,]𝐵))
4922adantr 484 . . . . . . . . 9 ((𝜑𝑤 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = dom 𝐹)
5048, 49eleqtrd 2892 . . . . . . . 8 ((𝜑𝑤 ∈ (𝐴[,]𝐵)) → 𝑤 ∈ dom 𝐹)
51 fvco 6736 . . . . . . . 8 ((Fun 𝐹𝑤 ∈ dom 𝐹) → ((abs ∘ 𝐹)‘𝑤) = (abs‘(𝐹𝑤)))
5247, 50, 51syl2anc 587 . . . . . . 7 ((𝜑𝑤 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑤) = (abs‘(𝐹𝑤)))
5352adantlr 714 . . . . . 6 (((𝜑𝑧 ∈ (𝐴[,]𝐵)) ∧ 𝑤 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑤) = (abs‘(𝐹𝑤)))
5446, 53breq12d 5043 . . . . 5 (((𝜑𝑧 ∈ (𝐴[,]𝐵)) ∧ 𝑤 ∈ (𝐴[,]𝐵)) → (((abs ∘ 𝐹)‘𝑧) ≤ ((abs ∘ 𝐹)‘𝑤) ↔ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑤))))
5554ralbidva 3161 . . . 4 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (∀𝑤 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑧) ≤ ((abs ∘ 𝐹)‘𝑤) ↔ ∀𝑤 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑤))))
5655rexbidva 3255 . . 3 (𝜑 → (∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑧) ≤ ((abs ∘ 𝐹)‘𝑤) ↔ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑤))))
5739, 56mpbid 235 . 2 (𝜑 → ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑤)))
5838, 57jca 515 1 (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑦)) ≤ (abs‘(𝐹𝑥)) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑤))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107   ⊆ wss 3881   class class class wbr 5030  dom cdm 5519   ∘ ccom 5523  Fun wfun 6318  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135  ℂcc 10524  ℝcr 10525   ≤ cle 10665  [,]cicc 12729  abscabs 14585  –cn→ccncf 23481 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-mulf 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cn 21832  df-cnp 21833  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483 This theorem is referenced by:  fourierdlem77  42820  fourierdlem83  42826
 Copyright terms: Public domain W3C validator