Proof of Theorem evthiccabs
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | evthiccabs.a | . . . . 5
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 2 |  | evthiccabs.b | . . . . 5
⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| 3 |  | evthiccabs.aleb | . . . . 5
⊢ (𝜑 → 𝐴 ≤ 𝐵) | 
| 4 |  | ax-resscn 11212 | . . . . . . . 8
⊢ ℝ
⊆ ℂ | 
| 5 |  | ssid 4006 | . . . . . . . 8
⊢ ℂ
⊆ ℂ | 
| 6 |  | cncfss 24925 | . . . . . . . 8
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ)) | 
| 7 | 4, 5, 6 | mp2an 692 | . . . . . . 7
⊢ ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ) | 
| 8 |  | evthiccabs.f | . . . . . . 7
⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) | 
| 9 | 7, 8 | sselid 3981 | . . . . . 6
⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) | 
| 10 |  | abscncf 24927 | . . . . . . 7
⊢ abs
∈ (ℂ–cn→ℝ) | 
| 11 | 10 | a1i 11 | . . . . . 6
⊢ (𝜑 → abs ∈
(ℂ–cn→ℝ)) | 
| 12 | 9, 11 | cncfco 24933 | . . . . 5
⊢ (𝜑 → (abs ∘ 𝐹) ∈ ((𝐴[,]𝐵)–cn→ℝ)) | 
| 13 | 1, 2, 3, 12 | evthicc 25494 | . . . 4
⊢ (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑦) ≤ ((abs ∘ 𝐹)‘𝑥) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑧) ≤ ((abs ∘ 𝐹)‘𝑤))) | 
| 14 | 13 | simpld 494 | . . 3
⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑦) ≤ ((abs ∘ 𝐹)‘𝑥)) | 
| 15 |  | cncff 24919 | . . . . . . . . . 10
⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ) | 
| 16 |  | ffun 6739 | . . . . . . . . . 10
⊢ (𝐹:(𝐴[,]𝐵)⟶ℝ → Fun 𝐹) | 
| 17 | 8, 15, 16 | 3syl 18 | . . . . . . . . 9
⊢ (𝜑 → Fun 𝐹) | 
| 18 | 17 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → Fun 𝐹) | 
| 19 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵)) | 
| 20 |  | fdm 6745 | . . . . . . . . . . . 12
⊢ (𝐹:(𝐴[,]𝐵)⟶ℝ → dom 𝐹 = (𝐴[,]𝐵)) | 
| 21 | 8, 15, 20 | 3syl 18 | . . . . . . . . . . 11
⊢ (𝜑 → dom 𝐹 = (𝐴[,]𝐵)) | 
| 22 | 21 | eqcomd 2743 | . . . . . . . . . 10
⊢ (𝜑 → (𝐴[,]𝐵) = dom 𝐹) | 
| 23 | 22 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = dom 𝐹) | 
| 24 | 19, 23 | eleqtrd 2843 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ dom 𝐹) | 
| 25 |  | fvco 7007 | . . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹‘𝑦))) | 
| 26 | 18, 24, 25 | syl2anc 584 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹‘𝑦))) | 
| 27 | 26 | adantlr 715 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹‘𝑦))) | 
| 28 | 17 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → Fun 𝐹) | 
| 29 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) | 
| 30 | 22 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = dom 𝐹) | 
| 31 | 29, 30 | eleqtrd 2843 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ dom 𝐹) | 
| 32 |  | fvco 7007 | . . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ dom 𝐹) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹‘𝑥))) | 
| 33 | 28, 31, 32 | syl2anc 584 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹‘𝑥))) | 
| 34 | 33 | adantr 480 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑥) = (abs‘(𝐹‘𝑥))) | 
| 35 | 27, 34 | breq12d 5156 | . . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((abs ∘ 𝐹)‘𝑦) ≤ ((abs ∘ 𝐹)‘𝑥) ↔ (abs‘(𝐹‘𝑦)) ≤ (abs‘(𝐹‘𝑥)))) | 
| 36 | 35 | ralbidva 3176 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (∀𝑦 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑦) ≤ ((abs ∘ 𝐹)‘𝑥) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ (abs‘(𝐹‘𝑥)))) | 
| 37 | 36 | rexbidva 3177 | . . 3
⊢ (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑦) ≤ ((abs ∘ 𝐹)‘𝑥) ↔ ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ (abs‘(𝐹‘𝑥)))) | 
| 38 | 14, 37 | mpbid 232 | . 2
⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ (abs‘(𝐹‘𝑥))) | 
| 39 | 13 | simprd 495 | . . 3
⊢ (𝜑 → ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑧) ≤ ((abs ∘ 𝐹)‘𝑤)) | 
| 40 | 17 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → Fun 𝐹) | 
| 41 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ (𝐴[,]𝐵)) | 
| 42 | 22 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = dom 𝐹) | 
| 43 | 41, 42 | eleqtrd 2843 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ dom 𝐹) | 
| 44 |  | fvco 7007 | . . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ dom 𝐹) → ((abs ∘ 𝐹)‘𝑧) = (abs‘(𝐹‘𝑧))) | 
| 45 | 40, 43, 44 | syl2anc 584 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑧) = (abs‘(𝐹‘𝑧))) | 
| 46 | 45 | adantr 480 | . . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) ∧ 𝑤 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑧) = (abs‘(𝐹‘𝑧))) | 
| 47 | 17 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐴[,]𝐵)) → Fun 𝐹) | 
| 48 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐴[,]𝐵)) → 𝑤 ∈ (𝐴[,]𝐵)) | 
| 49 | 22 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = dom 𝐹) | 
| 50 | 48, 49 | eleqtrd 2843 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐴[,]𝐵)) → 𝑤 ∈ dom 𝐹) | 
| 51 |  | fvco 7007 | . . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑤 ∈ dom 𝐹) → ((abs ∘ 𝐹)‘𝑤) = (abs‘(𝐹‘𝑤))) | 
| 52 | 47, 50, 51 | syl2anc 584 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑤) = (abs‘(𝐹‘𝑤))) | 
| 53 | 52 | adantlr 715 | . . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) ∧ 𝑤 ∈ (𝐴[,]𝐵)) → ((abs ∘ 𝐹)‘𝑤) = (abs‘(𝐹‘𝑤))) | 
| 54 | 46, 53 | breq12d 5156 | . . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) ∧ 𝑤 ∈ (𝐴[,]𝐵)) → (((abs ∘ 𝐹)‘𝑧) ≤ ((abs ∘ 𝐹)‘𝑤) ↔ (abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑤)))) | 
| 55 | 54 | ralbidva 3176 | . . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (∀𝑤 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑧) ≤ ((abs ∘ 𝐹)‘𝑤) ↔ ∀𝑤 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑤)))) | 
| 56 | 55 | rexbidva 3177 | . . 3
⊢ (𝜑 → (∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)((abs ∘ 𝐹)‘𝑧) ≤ ((abs ∘ 𝐹)‘𝑤) ↔ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑤)))) | 
| 57 | 39, 56 | mpbid 232 | . 2
⊢ (𝜑 → ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑤))) | 
| 58 | 38, 57 | jca 511 | 1
⊢ (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ (abs‘(𝐹‘𝑥)) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑤)))) |