| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mgm2nsgrplem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for mgm2nsgrp 18856: 𝑀 is a magma, even if 𝐴 = 𝐵 (𝑀 is the trivial magma in this case, see mgmb1mgm1 18589). (Contributed by AV, 27-Jan-2020.) |
| Ref | Expression |
|---|---|
| mgm2nsgrp.s | ⊢ 𝑆 = {𝐴, 𝐵} |
| mgm2nsgrp.b | ⊢ (Base‘𝑀) = 𝑆 |
| mgm2nsgrp.o | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) |
| Ref | Expression |
|---|---|
| mgm2nsgrplem1 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝑀 ∈ Mgm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1g 4727 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) | |
| 2 | mgm2nsgrp.s | . . 3 ⊢ 𝑆 = {𝐴, 𝐵} | |
| 3 | 1, 2 | eleqtrrdi 2840 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑆) |
| 4 | prid2g 4728 | . . 3 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ {𝐴, 𝐵}) | |
| 5 | 4, 2 | eleqtrrdi 2840 | . 2 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ 𝑆) |
| 6 | mgm2nsgrp.b | . . . 4 ⊢ (Base‘𝑀) = 𝑆 | |
| 7 | 6 | eqcomi 2739 | . . 3 ⊢ 𝑆 = (Base‘𝑀) |
| 8 | mgm2nsgrp.o | . . 3 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) | |
| 9 | ne0i 4307 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 𝑆 ≠ ∅) | |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝑆 ≠ ∅) |
| 11 | simplr 768 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐵 ∈ 𝑆) | |
| 12 | simpll 766 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐴 ∈ 𝑆) | |
| 13 | 7, 8, 10, 11, 12 | opifismgm 18593 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝑀 ∈ Mgm) |
| 14 | 3, 5, 13 | syl2an 596 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝑀 ∈ Mgm) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 ifcif 4491 {cpr 4594 ‘cfv 6514 ∈ cmpo 7392 Basecbs 17186 +gcplusg 17227 Mgmcmgm 18572 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-mgm 18574 |
| This theorem is referenced by: mgm2nsgrp 18856 mgmnsgrpex 18865 |
| Copyright terms: Public domain | W3C validator |