| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mgm2nsgrplem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for mgm2nsgrp 18935: 𝑀 is a magma, even if 𝐴 = 𝐵 (𝑀 is the trivial magma in this case, see mgmb1mgm1 18668). (Contributed by AV, 27-Jan-2020.) |
| Ref | Expression |
|---|---|
| mgm2nsgrp.s | ⊢ 𝑆 = {𝐴, 𝐵} |
| mgm2nsgrp.b | ⊢ (Base‘𝑀) = 𝑆 |
| mgm2nsgrp.o | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) |
| Ref | Expression |
|---|---|
| mgm2nsgrplem1 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝑀 ∈ Mgm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1g 4760 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) | |
| 2 | mgm2nsgrp.s | . . 3 ⊢ 𝑆 = {𝐴, 𝐵} | |
| 3 | 1, 2 | eleqtrrdi 2852 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑆) |
| 4 | prid2g 4761 | . . 3 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ {𝐴, 𝐵}) | |
| 5 | 4, 2 | eleqtrrdi 2852 | . 2 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ 𝑆) |
| 6 | mgm2nsgrp.b | . . . 4 ⊢ (Base‘𝑀) = 𝑆 | |
| 7 | 6 | eqcomi 2746 | . . 3 ⊢ 𝑆 = (Base‘𝑀) |
| 8 | mgm2nsgrp.o | . . 3 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if((𝑥 = 𝐴 ∧ 𝑦 = 𝐴), 𝐵, 𝐴)) | |
| 9 | ne0i 4341 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 𝑆 ≠ ∅) | |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝑆 ≠ ∅) |
| 11 | simplr 769 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐵 ∈ 𝑆) | |
| 12 | simpll 767 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐴 ∈ 𝑆) | |
| 13 | 7, 8, 10, 11, 12 | opifismgm 18672 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝑀 ∈ Mgm) |
| 14 | 3, 5, 13 | syl2an 596 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝑀 ∈ Mgm) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∅c0 4333 ifcif 4525 {cpr 4628 ‘cfv 6561 ∈ cmpo 7433 Basecbs 17247 +gcplusg 17297 Mgmcmgm 18651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-mgm 18653 |
| This theorem is referenced by: mgm2nsgrp 18935 mgmnsgrpex 18944 |
| Copyright terms: Public domain | W3C validator |