MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgm2nsgrplem1 Structured version   Visualization version   GIF version

Theorem mgm2nsgrplem1 18729
Description: Lemma 1 for mgm2nsgrp 18733: 𝑀 is a magma, even if 𝐴 = 𝐵 (𝑀 is the trivial magma in this case, see mgmb1mgm1 18511). (Contributed by AV, 27-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
mgm2nsgrp.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
Assertion
Ref Expression
mgm2nsgrplem1 ((𝐴𝑉𝐵𝑊) → 𝑀 ∈ Mgm)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀
Allowed substitution hints:   𝑀(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem mgm2nsgrplem1
StepHypRef Expression
1 prid1g 4722 . . 3 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
2 mgm2nsgrp.s . . 3 𝑆 = {𝐴, 𝐵}
31, 2eleqtrrdi 2849 . 2 (𝐴𝑉𝐴𝑆)
4 prid2g 4723 . . 3 (𝐵𝑊𝐵 ∈ {𝐴, 𝐵})
54, 2eleqtrrdi 2849 . 2 (𝐵𝑊𝐵𝑆)
6 mgm2nsgrp.b . . . 4 (Base‘𝑀) = 𝑆
76eqcomi 2746 . . 3 𝑆 = (Base‘𝑀)
8 mgm2nsgrp.o . . 3 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if((𝑥 = 𝐴𝑦 = 𝐴), 𝐵, 𝐴))
9 ne0i 4295 . . . 4 (𝐴𝑆𝑆 ≠ ∅)
109adantr 482 . . 3 ((𝐴𝑆𝐵𝑆) → 𝑆 ≠ ∅)
11 simplr 768 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝑥𝑆𝑦𝑆)) → 𝐵𝑆)
12 simpll 766 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝑥𝑆𝑦𝑆)) → 𝐴𝑆)
137, 8, 10, 11, 12opifismgm 18515 . 2 ((𝐴𝑆𝐵𝑆) → 𝑀 ∈ Mgm)
143, 5, 13syl2an 597 1 ((𝐴𝑉𝐵𝑊) → 𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2944  c0 4283  ifcif 4487  {cpr 4589  cfv 6497  cmpo 7360  Basecbs 17084  +gcplusg 17134  Mgmcmgm 18496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-mgm 18498
This theorem is referenced by:  mgm2nsgrp  18733  mgmnsgrpex  18742
  Copyright terms: Public domain W3C validator