MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submgmacs Structured version   Visualization version   GIF version

Theorem submgmacs 18644
Description: Submagmas are an algebraic closure system. (Contributed by AV, 27-Feb-2020.)
Hypothesis
Ref Expression
submgmacs.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
submgmacs (𝐺 ∈ Mgm → (SubMgm‘𝐺) ∈ (ACS‘𝐵))

Proof of Theorem submgmacs
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submgmacs.b . . . . . 6 𝐵 = (Base‘𝐺)
2 eqid 2729 . . . . . 6 (+g𝐺) = (+g𝐺)
31, 2issubmgm 18629 . . . . 5 (𝐺 ∈ Mgm → (𝑠 ∈ (SubMgm‘𝐺) ↔ (𝑠𝐵 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)))
4 velpw 4568 . . . . . 6 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
54anbi1i 624 . . . . 5 ((𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠) ↔ (𝑠𝐵 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠))
63, 5bitr4di 289 . . . 4 (𝐺 ∈ Mgm → (𝑠 ∈ (SubMgm‘𝐺) ↔ (𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)))
76eqabdv 2861 . . 3 (𝐺 ∈ Mgm → (SubMgm‘𝐺) = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)})
8 df-rab 3406 . . 3 {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠} = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)}
97, 8eqtr4di 2782 . 2 (𝐺 ∈ Mgm → (SubMgm‘𝐺) = {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠})
101fvexi 6872 . . 3 𝐵 ∈ V
111, 2mgmcl 18570 . . . . 5 ((𝐺 ∈ Mgm ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
12113expb 1120 . . . 4 ((𝐺 ∈ Mgm ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
1312ralrimivva 3180 . . 3 (𝐺 ∈ Mgm → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ 𝐵)
14 acsfn2 17624 . . 3 ((𝐵 ∈ V ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ 𝐵) → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵))
1510, 13, 14sylancr 587 . 2 (𝐺 ∈ Mgm → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵))
169, 15eqeltrd 2828 1 (𝐺 ∈ Mgm → (SubMgm‘𝐺) ∈ (ACS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  {crab 3405  Vcvv 3447  wss 3914  𝒫 cpw 4563  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  ACScacs 17546  Mgmcmgm 18565  SubMgmcsubmgm 18618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-1o 8434  df-2o 8435  df-en 8919  df-fin 8922  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-submgm 18620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator