MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submgmacs Structured version   Visualization version   GIF version

Theorem submgmacs 18627
Description: Submagmas are an algebraic closure system. (Contributed by AV, 27-Feb-2020.)
Hypothesis
Ref Expression
submgmacs.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
submgmacs (𝐺 ∈ Mgm → (SubMgm‘𝐺) ∈ (ACS‘𝐵))

Proof of Theorem submgmacs
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submgmacs.b . . . . . 6 𝐵 = (Base‘𝐺)
2 eqid 2733 . . . . . 6 (+g𝐺) = (+g𝐺)
31, 2issubmgm 18612 . . . . 5 (𝐺 ∈ Mgm → (𝑠 ∈ (SubMgm‘𝐺) ↔ (𝑠𝐵 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)))
4 velpw 4554 . . . . . 6 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
54anbi1i 624 . . . . 5 ((𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠) ↔ (𝑠𝐵 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠))
63, 5bitr4di 289 . . . 4 (𝐺 ∈ Mgm → (𝑠 ∈ (SubMgm‘𝐺) ↔ (𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)))
76eqabdv 2866 . . 3 (𝐺 ∈ Mgm → (SubMgm‘𝐺) = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)})
8 df-rab 3397 . . 3 {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠} = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)}
97, 8eqtr4di 2786 . 2 (𝐺 ∈ Mgm → (SubMgm‘𝐺) = {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠})
101fvexi 6842 . . 3 𝐵 ∈ V
111, 2mgmcl 18553 . . . . 5 ((𝐺 ∈ Mgm ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
12113expb 1120 . . . 4 ((𝐺 ∈ Mgm ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
1312ralrimivva 3176 . . 3 (𝐺 ∈ Mgm → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ 𝐵)
14 acsfn2 17571 . . 3 ((𝐵 ∈ V ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ 𝐵) → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵))
1510, 13, 14sylancr 587 . 2 (𝐺 ∈ Mgm → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵))
169, 15eqeltrd 2833 1 (𝐺 ∈ Mgm → (SubMgm‘𝐺) ∈ (ACS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {cab 2711  wral 3048  {crab 3396  Vcvv 3437  wss 3898  𝒫 cpw 4549  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  ACScacs 17489  Mgmcmgm 18548  SubMgmcsubmgm 18601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-om 7803  df-1o 8391  df-2o 8392  df-en 8876  df-fin 8879  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-submgm 18603
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator