![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > submgmacs | Structured version Visualization version GIF version |
Description: Submagmas are an algebraic closure system. (Contributed by AV, 27-Feb-2020.) |
Ref | Expression |
---|---|
submgmacs.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
submgmacs | ⊢ (𝐺 ∈ Mgm → (SubMgm‘𝐺) ∈ (ACS‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submgmacs.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2795 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | 1, 2 | issubmgm 43565 | . . . . 5 ⊢ (𝐺 ∈ Mgm → (𝑠 ∈ (SubMgm‘𝐺) ↔ (𝑠 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠))) |
4 | selpw 4464 | . . . . . 6 ⊢ (𝑠 ∈ 𝒫 𝐵 ↔ 𝑠 ⊆ 𝐵) | |
5 | 4 | anbi1i 623 | . . . . 5 ⊢ ((𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠) ↔ (𝑠 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠)) |
6 | 3, 5 | syl6bbr 290 | . . . 4 ⊢ (𝐺 ∈ Mgm → (𝑠 ∈ (SubMgm‘𝐺) ↔ (𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠))) |
7 | 6 | abbi2dv 2919 | . . 3 ⊢ (𝐺 ∈ Mgm → (SubMgm‘𝐺) = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠)}) |
8 | df-rab 3114 | . . 3 ⊢ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠} = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠)} | |
9 | 7, 8 | syl6eqr 2849 | . 2 ⊢ (𝐺 ∈ Mgm → (SubMgm‘𝐺) = {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠}) |
10 | 1 | fvexi 6557 | . . 3 ⊢ 𝐵 ∈ V |
11 | 1, 2 | mgmcl 17689 | . . . . 5 ⊢ ((𝐺 ∈ Mgm ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
12 | 11 | 3expb 1113 | . . . 4 ⊢ ((𝐺 ∈ Mgm ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
13 | 12 | ralrimivva 3158 | . . 3 ⊢ (𝐺 ∈ Mgm → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
14 | acsfn2 16768 | . . 3 ⊢ ((𝐵 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵)) | |
15 | 10, 13, 14 | sylancr 587 | . 2 ⊢ (𝐺 ∈ Mgm → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵)) |
16 | 9, 15 | eqeltrd 2883 | 1 ⊢ (𝐺 ∈ Mgm → (SubMgm‘𝐺) ∈ (ACS‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 {cab 2775 ∀wral 3105 {crab 3109 Vcvv 3437 ⊆ wss 3863 𝒫 cpw 4457 ‘cfv 6230 (class class class)co 7021 Basecbs 16317 +gcplusg 16399 ACScacs 16690 Mgmcmgm 17684 SubMgmcsubmgm 43554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-tp 4481 df-op 4483 df-uni 4750 df-int 4787 df-iun 4831 df-iin 4832 df-br 4967 df-opab 5029 df-mpt 5046 df-tr 5069 df-id 5353 df-eprel 5358 df-po 5367 df-so 5368 df-fr 5407 df-we 5409 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-pred 6028 df-ord 6074 df-on 6075 df-lim 6076 df-suc 6077 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-ov 7024 df-oprab 7025 df-mpo 7026 df-om 7442 df-wrecs 7803 df-recs 7865 df-rdg 7903 df-1o 7958 df-oadd 7962 df-er 8144 df-en 8363 df-fin 8366 df-mre 16691 df-mrc 16692 df-acs 16694 df-mgm 17686 df-submgm 43556 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |