Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > submgmacs | Structured version Visualization version GIF version |
Description: Submagmas are an algebraic closure system. (Contributed by AV, 27-Feb-2020.) |
Ref | Expression |
---|---|
submgmacs.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
submgmacs | ⊢ (𝐺 ∈ Mgm → (SubMgm‘𝐺) ∈ (ACS‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submgmacs.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2736 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | 1, 2 | issubmgm 45587 | . . . . 5 ⊢ (𝐺 ∈ Mgm → (𝑠 ∈ (SubMgm‘𝐺) ↔ (𝑠 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠))) |
4 | velpw 4544 | . . . . . 6 ⊢ (𝑠 ∈ 𝒫 𝐵 ↔ 𝑠 ⊆ 𝐵) | |
5 | 4 | anbi1i 625 | . . . . 5 ⊢ ((𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠) ↔ (𝑠 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠)) |
6 | 3, 5 | bitr4di 289 | . . . 4 ⊢ (𝐺 ∈ Mgm → (𝑠 ∈ (SubMgm‘𝐺) ↔ (𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠))) |
7 | 6 | abbi2dv 2875 | . . 3 ⊢ (𝐺 ∈ Mgm → (SubMgm‘𝐺) = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠)}) |
8 | df-rab 3306 | . . 3 ⊢ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠} = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠)} | |
9 | 7, 8 | eqtr4di 2794 | . 2 ⊢ (𝐺 ∈ Mgm → (SubMgm‘𝐺) = {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠}) |
10 | 1 | fvexi 6818 | . . 3 ⊢ 𝐵 ∈ V |
11 | 1, 2 | mgmcl 18378 | . . . . 5 ⊢ ((𝐺 ∈ Mgm ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
12 | 11 | 3expb 1120 | . . . 4 ⊢ ((𝐺 ∈ Mgm ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
13 | 12 | ralrimivva 3194 | . . 3 ⊢ (𝐺 ∈ Mgm → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
14 | acsfn2 17421 | . . 3 ⊢ ((𝐵 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵)) | |
15 | 10, 13, 14 | sylancr 588 | . 2 ⊢ (𝐺 ∈ Mgm → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵)) |
16 | 9, 15 | eqeltrd 2837 | 1 ⊢ (𝐺 ∈ Mgm → (SubMgm‘𝐺) ∈ (ACS‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 {cab 2713 ∀wral 3062 {crab 3303 Vcvv 3437 ⊆ wss 3892 𝒫 cpw 4539 ‘cfv 6458 (class class class)co 7307 Basecbs 16961 +gcplusg 17011 ACScacs 17343 Mgmcmgm 18373 SubMgmcsubmgm 45576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-om 7745 df-1o 8328 df-en 8765 df-fin 8768 df-mre 17344 df-mrc 17345 df-acs 17347 df-mgm 18375 df-submgm 45578 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |