| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > submgmacs | Structured version Visualization version GIF version | ||
| Description: Submagmas are an algebraic closure system. (Contributed by AV, 27-Feb-2020.) |
| Ref | Expression |
|---|---|
| submgmacs.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| submgmacs | ⊢ (𝐺 ∈ Mgm → (SubMgm‘𝐺) ∈ (ACS‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submgmacs.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2733 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | 1, 2 | issubmgm 18612 | . . . . 5 ⊢ (𝐺 ∈ Mgm → (𝑠 ∈ (SubMgm‘𝐺) ↔ (𝑠 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠))) |
| 4 | velpw 4554 | . . . . . 6 ⊢ (𝑠 ∈ 𝒫 𝐵 ↔ 𝑠 ⊆ 𝐵) | |
| 5 | 4 | anbi1i 624 | . . . . 5 ⊢ ((𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠) ↔ (𝑠 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠)) |
| 6 | 3, 5 | bitr4di 289 | . . . 4 ⊢ (𝐺 ∈ Mgm → (𝑠 ∈ (SubMgm‘𝐺) ↔ (𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠))) |
| 7 | 6 | eqabdv 2866 | . . 3 ⊢ (𝐺 ∈ Mgm → (SubMgm‘𝐺) = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠)}) |
| 8 | df-rab 3397 | . . 3 ⊢ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠} = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠)} | |
| 9 | 7, 8 | eqtr4di 2786 | . 2 ⊢ (𝐺 ∈ Mgm → (SubMgm‘𝐺) = {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠}) |
| 10 | 1 | fvexi 6842 | . . 3 ⊢ 𝐵 ∈ V |
| 11 | 1, 2 | mgmcl 18553 | . . . . 5 ⊢ ((𝐺 ∈ Mgm ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 12 | 11 | 3expb 1120 | . . . 4 ⊢ ((𝐺 ∈ Mgm ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 13 | 12 | ralrimivva 3176 | . . 3 ⊢ (𝐺 ∈ Mgm → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 14 | acsfn2 17571 | . . 3 ⊢ ((𝐵 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵)) | |
| 15 | 10, 13, 14 | sylancr 587 | . 2 ⊢ (𝐺 ∈ Mgm → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵)) |
| 16 | 9, 15 | eqeltrd 2833 | 1 ⊢ (𝐺 ∈ Mgm → (SubMgm‘𝐺) ∈ (ACS‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cab 2711 ∀wral 3048 {crab 3396 Vcvv 3437 ⊆ wss 3898 𝒫 cpw 4549 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 ACScacs 17489 Mgmcmgm 18548 SubMgmcsubmgm 18601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-1o 8391 df-2o 8392 df-en 8876 df-fin 8879 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-submgm 18603 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |