![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > submgmacs | Structured version Visualization version GIF version |
Description: Submagmas are an algebraic closure system. (Contributed by AV, 27-Feb-2020.) |
Ref | Expression |
---|---|
submgmacs.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
submgmacs | ⊢ (𝐺 ∈ Mgm → (SubMgm‘𝐺) ∈ (ACS‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submgmacs.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2726 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | 1, 2 | issubmgm 18635 | . . . . 5 ⊢ (𝐺 ∈ Mgm → (𝑠 ∈ (SubMgm‘𝐺) ↔ (𝑠 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠))) |
4 | velpw 4602 | . . . . . 6 ⊢ (𝑠 ∈ 𝒫 𝐵 ↔ 𝑠 ⊆ 𝐵) | |
5 | 4 | anbi1i 623 | . . . . 5 ⊢ ((𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠) ↔ (𝑠 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠)) |
6 | 3, 5 | bitr4di 289 | . . . 4 ⊢ (𝐺 ∈ Mgm → (𝑠 ∈ (SubMgm‘𝐺) ↔ (𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠))) |
7 | 6 | eqabdv 2861 | . . 3 ⊢ (𝐺 ∈ Mgm → (SubMgm‘𝐺) = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠)}) |
8 | df-rab 3427 | . . 3 ⊢ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠} = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠)} | |
9 | 7, 8 | eqtr4di 2784 | . 2 ⊢ (𝐺 ∈ Mgm → (SubMgm‘𝐺) = {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠}) |
10 | 1 | fvexi 6899 | . . 3 ⊢ 𝐵 ∈ V |
11 | 1, 2 | mgmcl 18576 | . . . . 5 ⊢ ((𝐺 ∈ Mgm ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
12 | 11 | 3expb 1117 | . . . 4 ⊢ ((𝐺 ∈ Mgm ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
13 | 12 | ralrimivva 3194 | . . 3 ⊢ (𝐺 ∈ Mgm → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
14 | acsfn2 17616 | . . 3 ⊢ ((𝐵 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵)) | |
15 | 10, 13, 14 | sylancr 586 | . 2 ⊢ (𝐺 ∈ Mgm → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵)) |
16 | 9, 15 | eqeltrd 2827 | 1 ⊢ (𝐺 ∈ Mgm → (SubMgm‘𝐺) ∈ (ACS‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {cab 2703 ∀wral 3055 {crab 3426 Vcvv 3468 ⊆ wss 3943 𝒫 cpw 4597 ‘cfv 6537 (class class class)co 7405 Basecbs 17153 +gcplusg 17206 ACScacs 17538 Mgmcmgm 18571 SubMgmcsubmgm 18624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-om 7853 df-1o 8467 df-en 8942 df-fin 8945 df-mre 17539 df-mrc 17540 df-acs 17542 df-mgm 18573 df-submgm 18626 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |