Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummgmpropd Structured version   Visualization version   GIF version

Theorem gsummgmpropd 17900
 Description: A stronger version of gsumpropd 17897 if at least one of the involved structures is a magma, see gsumpropd2 17899. (Contributed by AV, 31-Jan-2020.)
Hypotheses
Ref Expression
gsummgmpropd.f (𝜑𝐹𝑉)
gsummgmpropd.g (𝜑𝐺𝑊)
gsummgmpropd.h (𝜑𝐻𝑋)
gsummgmpropd.b (𝜑 → (Base‘𝐺) = (Base‘𝐻))
gsummgmpropd.m (𝜑𝐺 ∈ Mgm)
gsummgmpropd.e ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
gsummgmpropd.n (𝜑 → Fun 𝐹)
gsummgmpropd.r (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))
Assertion
Ref Expression
gsummgmpropd (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Distinct variable groups:   𝐹,𝑠,𝑡   𝐺,𝑠,𝑡   𝐻,𝑠,𝑡   𝜑,𝑠,𝑡
Allowed substitution hints:   𝑉(𝑡,𝑠)   𝑊(𝑡,𝑠)   𝑋(𝑡,𝑠)

Proof of Theorem gsummgmpropd
StepHypRef Expression
1 gsummgmpropd.f . 2 (𝜑𝐹𝑉)
2 gsummgmpropd.g . 2 (𝜑𝐺𝑊)
3 gsummgmpropd.h . 2 (𝜑𝐻𝑋)
4 gsummgmpropd.b . 2 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
5 gsummgmpropd.m . . . 4 (𝜑𝐺 ∈ Mgm)
6 eqid 2798 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
7 eqid 2798 . . . . . 6 (+g𝐺) = (+g𝐺)
86, 7mgmcl 17864 . . . . 5 ((𝐺 ∈ Mgm ∧ 𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺)) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
983expib 1119 . . . 4 (𝐺 ∈ Mgm → ((𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺)) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺)))
105, 9syl 17 . . 3 (𝜑 → ((𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺)) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺)))
1110imp 410 . 2 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
12 gsummgmpropd.e . 2 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
13 gsummgmpropd.n . 2 (𝜑 → Fun 𝐹)
14 gsummgmpropd.r . 2 (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))
151, 2, 3, 4, 11, 12, 13, 14gsumpropd2 17899 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ⊆ wss 3882  ran crn 5523  Fun wfun 6323  ‘cfv 6329  (class class class)co 7142  Basecbs 16492  +gcplusg 16574   Σg cgsu 16723  Mgmcmgm 17859 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7451  ax-cnex 10597  ax-resscn 10598  ax-1cn 10599  ax-icn 10600  ax-addcl 10601  ax-addrcl 10602  ax-mulcl 10603  ax-mulrcl 10604  ax-mulcom 10605  ax-addass 10606  ax-mulass 10607  ax-distr 10608  ax-i2m1 10609  ax-1ne0 10610  ax-1rid 10611  ax-rnegex 10612  ax-rrecex 10613  ax-cnre 10614  ax-pre-lttri 10615  ax-pre-lttrn 10616  ax-pre-ltadd 10617  ax-pre-mulgt0 10618 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3722  df-csb 3830  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4246  df-if 4428  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7571  df-1st 7681  df-2nd 7682  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-pnf 10681  df-mnf 10682  df-xr 10683  df-ltxr 10684  df-le 10685  df-sub 10876  df-neg 10877  df-nn 11641  df-n0 11901  df-z 11987  df-uz 12249  df-fz 12903  df-seq 13382  df-0g 16724  df-gsum 16725  df-mgm 17861 This theorem is referenced by:  gsumply1subr  20901
 Copyright terms: Public domain W3C validator