MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummgmpropd Structured version   Visualization version   GIF version

Theorem gsummgmpropd 18669
Description: A stronger version of gsumpropd 18666 if at least one of the involved structures is a magma, see gsumpropd2 18668. (Contributed by AV, 31-Jan-2020.)
Hypotheses
Ref Expression
gsummgmpropd.f (𝜑𝐹𝑉)
gsummgmpropd.g (𝜑𝐺𝑊)
gsummgmpropd.h (𝜑𝐻𝑋)
gsummgmpropd.b (𝜑 → (Base‘𝐺) = (Base‘𝐻))
gsummgmpropd.m (𝜑𝐺 ∈ Mgm)
gsummgmpropd.e ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
gsummgmpropd.n (𝜑 → Fun 𝐹)
gsummgmpropd.r (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))
Assertion
Ref Expression
gsummgmpropd (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Distinct variable groups:   𝐹,𝑠,𝑡   𝐺,𝑠,𝑡   𝐻,𝑠,𝑡   𝜑,𝑠,𝑡
Allowed substitution hints:   𝑉(𝑡,𝑠)   𝑊(𝑡,𝑠)   𝑋(𝑡,𝑠)

Proof of Theorem gsummgmpropd
StepHypRef Expression
1 gsummgmpropd.f . 2 (𝜑𝐹𝑉)
2 gsummgmpropd.g . 2 (𝜑𝐺𝑊)
3 gsummgmpropd.h . 2 (𝜑𝐻𝑋)
4 gsummgmpropd.b . 2 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
5 gsummgmpropd.m . . . 4 (𝜑𝐺 ∈ Mgm)
6 eqid 2725 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
7 eqid 2725 . . . . . 6 (+g𝐺) = (+g𝐺)
86, 7mgmcl 18631 . . . . 5 ((𝐺 ∈ Mgm ∧ 𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺)) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
983expib 1119 . . . 4 (𝐺 ∈ Mgm → ((𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺)) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺)))
105, 9syl 17 . . 3 (𝜑 → ((𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺)) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺)))
1110imp 405 . 2 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
12 gsummgmpropd.e . 2 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
13 gsummgmpropd.n . 2 (𝜑 → Fun 𝐹)
14 gsummgmpropd.r . 2 (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))
151, 2, 3, 4, 11, 12, 13, 14gsumpropd2 18668 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wss 3946  ran crn 5682  Fun wfun 6547  cfv 6553  (class class class)co 7423  Basecbs 17208  +gcplusg 17261   Σg cgsu 17450  Mgmcmgm 18626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-om 7876  df-1st 8002  df-2nd 8003  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-er 8733  df-en 8974  df-dom 8975  df-sdom 8976  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-nn 12260  df-n0 12520  df-z 12606  df-uz 12870  df-fz 13534  df-seq 14017  df-0g 17451  df-gsum 17452  df-mgm 18628
This theorem is referenced by:  gsumply1subr  22215
  Copyright terms: Public domain W3C validator