MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabsubmgmd Structured version   Visualization version   GIF version

Theorem rabsubmgmd 18717
Description: Deduction for proving that a restricted class abstraction is a submagma. (Contributed by AV, 26-Feb-2020.)
Hypotheses
Ref Expression
rabsubmgmd.b 𝐵 = (Base‘𝑀)
rabsubmgmd.p + = (+g𝑀)
rabsubmgmd.m (𝜑𝑀 ∈ Mgm)
rabsubmgmd.cp ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝜃𝜏))) → 𝜂)
rabsubmgmd.th (𝑧 = 𝑥 → (𝜓𝜃))
rabsubmgmd.ta (𝑧 = 𝑦 → (𝜓𝜏))
rabsubmgmd.et (𝑧 = (𝑥 + 𝑦) → (𝜓𝜂))
Assertion
Ref Expression
rabsubmgmd (𝜑 → {𝑧𝐵𝜓} ∈ (SubMgm‘𝑀))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝜓,𝑥,𝑦   𝑧, +   𝜂,𝑧   𝜏,𝑧   𝜃,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑧)   𝜃(𝑥,𝑦)   𝜏(𝑥,𝑦)   𝜂(𝑥,𝑦)   + (𝑥,𝑦)   𝑀(𝑧)

Proof of Theorem rabsubmgmd
StepHypRef Expression
1 ssrab2 4080 . . 3 {𝑧𝐵𝜓} ⊆ 𝐵
21a1i 11 . 2 (𝜑 → {𝑧𝐵𝜓} ⊆ 𝐵)
3 rabsubmgmd.th . . . . . 6 (𝑧 = 𝑥 → (𝜓𝜃))
43elrab 3692 . . . . 5 (𝑥 ∈ {𝑧𝐵𝜓} ↔ (𝑥𝐵𝜃))
5 rabsubmgmd.ta . . . . . 6 (𝑧 = 𝑦 → (𝜓𝜏))
65elrab 3692 . . . . 5 (𝑦 ∈ {𝑧𝐵𝜓} ↔ (𝑦𝐵𝜏))
74, 6anbi12i 628 . . . 4 ((𝑥 ∈ {𝑧𝐵𝜓} ∧ 𝑦 ∈ {𝑧𝐵𝜓}) ↔ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏)))
8 rabsubmgmd.et . . . . 5 (𝑧 = (𝑥 + 𝑦) → (𝜓𝜂))
9 rabsubmgmd.m . . . . . . 7 (𝜑𝑀 ∈ Mgm)
109adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → 𝑀 ∈ Mgm)
11 simprll 779 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → 𝑥𝐵)
12 simprrl 781 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → 𝑦𝐵)
13 rabsubmgmd.b . . . . . . 7 𝐵 = (Base‘𝑀)
14 rabsubmgmd.p . . . . . . 7 + = (+g𝑀)
1513, 14mgmcl 18656 . . . . . 6 ((𝑀 ∈ Mgm ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
1610, 11, 12, 15syl3anc 1373 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → (𝑥 + 𝑦) ∈ 𝐵)
17 simpl 482 . . . . . . . 8 ((𝑥𝐵𝜃) → 𝑥𝐵)
18 simpl 482 . . . . . . . 8 ((𝑦𝐵𝜏) → 𝑦𝐵)
1917, 18anim12i 613 . . . . . . 7 (((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏)) → (𝑥𝐵𝑦𝐵))
20 simpr 484 . . . . . . . 8 ((𝑥𝐵𝜃) → 𝜃)
21 simpr 484 . . . . . . . 8 ((𝑦𝐵𝜏) → 𝜏)
2220, 21anim12i 613 . . . . . . 7 (((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏)) → (𝜃𝜏))
2319, 22jca 511 . . . . . 6 (((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏)) → ((𝑥𝐵𝑦𝐵) ∧ (𝜃𝜏)))
24 rabsubmgmd.cp . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝜃𝜏))) → 𝜂)
2523, 24sylan2 593 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → 𝜂)
268, 16, 25elrabd 3694 . . . 4 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})
277, 26sylan2b 594 . . 3 ((𝜑 ∧ (𝑥 ∈ {𝑧𝐵𝜓} ∧ 𝑦 ∈ {𝑧𝐵𝜓})) → (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})
2827ralrimivva 3202 . 2 (𝜑 → ∀𝑥 ∈ {𝑧𝐵𝜓}∀𝑦 ∈ {𝑧𝐵𝜓} (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})
2913, 14issubmgm 18715 . . 3 (𝑀 ∈ Mgm → ({𝑧𝐵𝜓} ∈ (SubMgm‘𝑀) ↔ ({𝑧𝐵𝜓} ⊆ 𝐵 ∧ ∀𝑥 ∈ {𝑧𝐵𝜓}∀𝑦 ∈ {𝑧𝐵𝜓} (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})))
309, 29syl 17 . 2 (𝜑 → ({𝑧𝐵𝜓} ∈ (SubMgm‘𝑀) ↔ ({𝑧𝐵𝜓} ⊆ 𝐵 ∧ ∀𝑥 ∈ {𝑧𝐵𝜓}∀𝑦 ∈ {𝑧𝐵𝜓} (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})))
312, 28, 30mpbir2and 713 1 (𝜑 → {𝑧𝐵𝜓} ∈ (SubMgm‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  {crab 3436  wss 3951  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  Mgmcmgm 18651  SubMgmcsubmgm 18704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-mgm 18653  df-submgm 18706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator