Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabsubmgmd Structured version   Visualization version   GIF version

Theorem rabsubmgmd 46171
Description: Deduction for proving that a restricted class abstraction is a submagma. (Contributed by AV, 26-Feb-2020.)
Hypotheses
Ref Expression
rabsubmgmd.b 𝐵 = (Base‘𝑀)
rabsubmgmd.p + = (+g𝑀)
rabsubmgmd.m (𝜑𝑀 ∈ Mgm)
rabsubmgmd.cp ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝜃𝜏))) → 𝜂)
rabsubmgmd.th (𝑧 = 𝑥 → (𝜓𝜃))
rabsubmgmd.ta (𝑧 = 𝑦 → (𝜓𝜏))
rabsubmgmd.et (𝑧 = (𝑥 + 𝑦) → (𝜓𝜂))
Assertion
Ref Expression
rabsubmgmd (𝜑 → {𝑧𝐵𝜓} ∈ (SubMgm‘𝑀))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝜓,𝑥,𝑦   𝑧, +   𝜂,𝑧   𝜏,𝑧   𝜃,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑧)   𝜃(𝑥,𝑦)   𝜏(𝑥,𝑦)   𝜂(𝑥,𝑦)   + (𝑥,𝑦)   𝑀(𝑧)

Proof of Theorem rabsubmgmd
StepHypRef Expression
1 ssrab2 4038 . . 3 {𝑧𝐵𝜓} ⊆ 𝐵
21a1i 11 . 2 (𝜑 → {𝑧𝐵𝜓} ⊆ 𝐵)
3 rabsubmgmd.th . . . . . 6 (𝑧 = 𝑥 → (𝜓𝜃))
43elrab 3646 . . . . 5 (𝑥 ∈ {𝑧𝐵𝜓} ↔ (𝑥𝐵𝜃))
5 rabsubmgmd.ta . . . . . 6 (𝑧 = 𝑦 → (𝜓𝜏))
65elrab 3646 . . . . 5 (𝑦 ∈ {𝑧𝐵𝜓} ↔ (𝑦𝐵𝜏))
74, 6anbi12i 628 . . . 4 ((𝑥 ∈ {𝑧𝐵𝜓} ∧ 𝑦 ∈ {𝑧𝐵𝜓}) ↔ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏)))
8 rabsubmgmd.et . . . . 5 (𝑧 = (𝑥 + 𝑦) → (𝜓𝜂))
9 rabsubmgmd.m . . . . . . 7 (𝜑𝑀 ∈ Mgm)
109adantr 482 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → 𝑀 ∈ Mgm)
11 simprll 778 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → 𝑥𝐵)
12 simprrl 780 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → 𝑦𝐵)
13 rabsubmgmd.b . . . . . . 7 𝐵 = (Base‘𝑀)
14 rabsubmgmd.p . . . . . . 7 + = (+g𝑀)
1513, 14mgmcl 18505 . . . . . 6 ((𝑀 ∈ Mgm ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
1610, 11, 12, 15syl3anc 1372 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → (𝑥 + 𝑦) ∈ 𝐵)
17 simpl 484 . . . . . . . 8 ((𝑥𝐵𝜃) → 𝑥𝐵)
18 simpl 484 . . . . . . . 8 ((𝑦𝐵𝜏) → 𝑦𝐵)
1917, 18anim12i 614 . . . . . . 7 (((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏)) → (𝑥𝐵𝑦𝐵))
20 simpr 486 . . . . . . . 8 ((𝑥𝐵𝜃) → 𝜃)
21 simpr 486 . . . . . . . 8 ((𝑦𝐵𝜏) → 𝜏)
2220, 21anim12i 614 . . . . . . 7 (((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏)) → (𝜃𝜏))
2319, 22jca 513 . . . . . 6 (((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏)) → ((𝑥𝐵𝑦𝐵) ∧ (𝜃𝜏)))
24 rabsubmgmd.cp . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝜃𝜏))) → 𝜂)
2523, 24sylan2 594 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → 𝜂)
268, 16, 25elrabd 3648 . . . 4 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})
277, 26sylan2b 595 . . 3 ((𝜑 ∧ (𝑥 ∈ {𝑧𝐵𝜓} ∧ 𝑦 ∈ {𝑧𝐵𝜓})) → (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})
2827ralrimivva 3194 . 2 (𝜑 → ∀𝑥 ∈ {𝑧𝐵𝜓}∀𝑦 ∈ {𝑧𝐵𝜓} (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})
2913, 14issubmgm 46169 . . 3 (𝑀 ∈ Mgm → ({𝑧𝐵𝜓} ∈ (SubMgm‘𝑀) ↔ ({𝑧𝐵𝜓} ⊆ 𝐵 ∧ ∀𝑥 ∈ {𝑧𝐵𝜓}∀𝑦 ∈ {𝑧𝐵𝜓} (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})))
309, 29syl 17 . 2 (𝜑 → ({𝑧𝐵𝜓} ∈ (SubMgm‘𝑀) ↔ ({𝑧𝐵𝜓} ⊆ 𝐵 ∧ ∀𝑥 ∈ {𝑧𝐵𝜓}∀𝑦 ∈ {𝑧𝐵𝜓} (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})))
312, 28, 30mpbir2and 712 1 (𝜑 → {𝑧𝐵𝜓} ∈ (SubMgm‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3061  {crab 3406  wss 3911  cfv 6497  (class class class)co 7358  Basecbs 17088  +gcplusg 17138  Mgmcmgm 18500  SubMgmcsubmgm 46158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-sbc 3741  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-iota 6449  df-fun 6499  df-fv 6505  df-ov 7361  df-mgm 18502  df-submgm 46160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator