MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismhmd Structured version   Visualization version   GIF version

Theorem ismhmd 18812
Description: Deduction version of ismhm 18811. (Contributed by SN, 27-Jul-2024.)
Hypotheses
Ref Expression
ismhmd.b 𝐵 = (Base‘𝑆)
ismhmd.c 𝐶 = (Base‘𝑇)
ismhmd.p + = (+g𝑆)
ismhmd.q = (+g𝑇)
ismhmd.0 0 = (0g𝑆)
ismhmd.z 𝑍 = (0g𝑇)
ismhmd.s (𝜑𝑆 ∈ Mnd)
ismhmd.t (𝜑𝑇 ∈ Mnd)
ismhmd.f (𝜑𝐹:𝐵𝐶)
ismhmd.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
ismhmd.h (𝜑 → (𝐹0 ) = 𝑍)
Assertion
Ref Expression
ismhmd (𝜑𝐹 ∈ (𝑆 MndHom 𝑇))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   + (𝑥,𝑦)   (𝑥,𝑦)   0 (𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem ismhmd
StepHypRef Expression
1 ismhmd.s . 2 (𝜑𝑆 ∈ Mnd)
2 ismhmd.t . 2 (𝜑𝑇 ∈ Mnd)
3 ismhmd.f . . 3 (𝜑𝐹:𝐵𝐶)
4 ismhmd.a . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
54ralrimivva 3200 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
6 ismhmd.h . . 3 (𝜑 → (𝐹0 ) = 𝑍)
73, 5, 63jca 1127 . 2 (𝜑 → (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑍))
8 ismhmd.b . . 3 𝐵 = (Base‘𝑆)
9 ismhmd.c . . 3 𝐶 = (Base‘𝑇)
10 ismhmd.p . . 3 + = (+g𝑆)
11 ismhmd.q . . 3 = (+g𝑇)
12 ismhmd.0 . . 3 0 = (0g𝑆)
13 ismhmd.z . . 3 𝑍 = (0g𝑇)
148, 9, 10, 11, 12, 13ismhm 18811 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑍)))
151, 2, 7, 14syl21anbrc 1343 1 (𝜑𝐹 ∈ (𝑆 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wf 6559  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  0gc0g 17486  Mndcmnd 18760   MndHom cmhm 18807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-mhm 18809
This theorem is referenced by:  pwspjmhmmgpd  20342  imasmhm  33362  mhphflem  42583
  Copyright terms: Public domain W3C validator