![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismhmd | Structured version Visualization version GIF version |
Description: Deduction version of ismhm 18820. (Contributed by SN, 27-Jul-2024.) |
Ref | Expression |
---|---|
ismhmd.b | ⊢ 𝐵 = (Base‘𝑆) |
ismhmd.c | ⊢ 𝐶 = (Base‘𝑇) |
ismhmd.p | ⊢ + = (+g‘𝑆) |
ismhmd.q | ⊢ ⨣ = (+g‘𝑇) |
ismhmd.0 | ⊢ 0 = (0g‘𝑆) |
ismhmd.z | ⊢ 𝑍 = (0g‘𝑇) |
ismhmd.s | ⊢ (𝜑 → 𝑆 ∈ Mnd) |
ismhmd.t | ⊢ (𝜑 → 𝑇 ∈ Mnd) |
ismhmd.f | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
ismhmd.a | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
ismhmd.h | ⊢ (𝜑 → (𝐹‘ 0 ) = 𝑍) |
Ref | Expression |
---|---|
ismhmd | ⊢ (𝜑 → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismhmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Mnd) | |
2 | ismhmd.t | . 2 ⊢ (𝜑 → 𝑇 ∈ Mnd) | |
3 | ismhmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
4 | ismhmd.a | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
5 | 4 | ralrimivva 3208 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
6 | ismhmd.h | . . 3 ⊢ (𝜑 → (𝐹‘ 0 ) = 𝑍) | |
7 | 3, 5, 6 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑍)) |
8 | ismhmd.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
9 | ismhmd.c | . . 3 ⊢ 𝐶 = (Base‘𝑇) | |
10 | ismhmd.p | . . 3 ⊢ + = (+g‘𝑆) | |
11 | ismhmd.q | . . 3 ⊢ ⨣ = (+g‘𝑇) | |
12 | ismhmd.0 | . . 3 ⊢ 0 = (0g‘𝑆) | |
13 | ismhmd.z | . . 3 ⊢ 𝑍 = (0g‘𝑇) | |
14 | 8, 9, 10, 11, 12, 13 | ismhm 18820 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑍))) |
15 | 1, 2, 7, 14 | syl21anbrc 1344 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 0gc0g 17499 Mndcmnd 18772 MndHom cmhm 18816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-mhm 18818 |
This theorem is referenced by: pwspjmhmmgpd 20351 imasmhm 33347 mhphflem 42551 |
Copyright terms: Public domain | W3C validator |