MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismhmd Structured version   Visualization version   GIF version

Theorem ismhmd 18821
Description: Deduction version of ismhm 18820. (Contributed by SN, 27-Jul-2024.)
Hypotheses
Ref Expression
ismhmd.b 𝐵 = (Base‘𝑆)
ismhmd.c 𝐶 = (Base‘𝑇)
ismhmd.p + = (+g𝑆)
ismhmd.q = (+g𝑇)
ismhmd.0 0 = (0g𝑆)
ismhmd.z 𝑍 = (0g𝑇)
ismhmd.s (𝜑𝑆 ∈ Mnd)
ismhmd.t (𝜑𝑇 ∈ Mnd)
ismhmd.f (𝜑𝐹:𝐵𝐶)
ismhmd.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
ismhmd.h (𝜑 → (𝐹0 ) = 𝑍)
Assertion
Ref Expression
ismhmd (𝜑𝐹 ∈ (𝑆 MndHom 𝑇))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   + (𝑥,𝑦)   (𝑥,𝑦)   0 (𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem ismhmd
StepHypRef Expression
1 ismhmd.s . 2 (𝜑𝑆 ∈ Mnd)
2 ismhmd.t . 2 (𝜑𝑇 ∈ Mnd)
3 ismhmd.f . . 3 (𝜑𝐹:𝐵𝐶)
4 ismhmd.a . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
54ralrimivva 3208 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
6 ismhmd.h . . 3 (𝜑 → (𝐹0 ) = 𝑍)
73, 5, 63jca 1128 . 2 (𝜑 → (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑍))
8 ismhmd.b . . 3 𝐵 = (Base‘𝑆)
9 ismhmd.c . . 3 𝐶 = (Base‘𝑇)
10 ismhmd.p . . 3 + = (+g𝑆)
11 ismhmd.q . . 3 = (+g𝑇)
12 ismhmd.0 . . 3 0 = (0g𝑆)
13 ismhmd.z . . 3 𝑍 = (0g𝑇)
148, 9, 10, 11, 12, 13ismhm 18820 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑍)))
151, 2, 7, 14syl21anbrc 1344 1 (𝜑𝐹 ∈ (𝑆 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wf 6569  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Mndcmnd 18772   MndHom cmhm 18816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-mhm 18818
This theorem is referenced by:  pwspjmhmmgpd  20351  imasmhm  33347  mhphflem  42551
  Copyright terms: Public domain W3C validator