|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ismhmd | Structured version Visualization version GIF version | ||
| Description: Deduction version of ismhm 18798. (Contributed by SN, 27-Jul-2024.) | 
| Ref | Expression | 
|---|---|
| ismhmd.b | ⊢ 𝐵 = (Base‘𝑆) | 
| ismhmd.c | ⊢ 𝐶 = (Base‘𝑇) | 
| ismhmd.p | ⊢ + = (+g‘𝑆) | 
| ismhmd.q | ⊢ ⨣ = (+g‘𝑇) | 
| ismhmd.0 | ⊢ 0 = (0g‘𝑆) | 
| ismhmd.z | ⊢ 𝑍 = (0g‘𝑇) | 
| ismhmd.s | ⊢ (𝜑 → 𝑆 ∈ Mnd) | 
| ismhmd.t | ⊢ (𝜑 → 𝑇 ∈ Mnd) | 
| ismhmd.f | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | 
| ismhmd.a | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | 
| ismhmd.h | ⊢ (𝜑 → (𝐹‘ 0 ) = 𝑍) | 
| Ref | Expression | 
|---|---|
| ismhmd | ⊢ (𝜑 → 𝐹 ∈ (𝑆 MndHom 𝑇)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ismhmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Mnd) | |
| 2 | ismhmd.t | . 2 ⊢ (𝜑 → 𝑇 ∈ Mnd) | |
| 3 | ismhmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
| 4 | ismhmd.a | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
| 5 | 4 | ralrimivva 3202 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | 
| 6 | ismhmd.h | . . 3 ⊢ (𝜑 → (𝐹‘ 0 ) = 𝑍) | |
| 7 | 3, 5, 6 | 3jca 1129 | . 2 ⊢ (𝜑 → (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑍)) | 
| 8 | ismhmd.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 9 | ismhmd.c | . . 3 ⊢ 𝐶 = (Base‘𝑇) | |
| 10 | ismhmd.p | . . 3 ⊢ + = (+g‘𝑆) | |
| 11 | ismhmd.q | . . 3 ⊢ ⨣ = (+g‘𝑇) | |
| 12 | ismhmd.0 | . . 3 ⊢ 0 = (0g‘𝑆) | |
| 13 | ismhmd.z | . . 3 ⊢ 𝑍 = (0g‘𝑇) | |
| 14 | 8, 9, 10, 11, 12, 13 | ismhm 18798 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑍))) | 
| 15 | 1, 2, 7, 14 | syl21anbrc 1345 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆 MndHom 𝑇)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 +gcplusg 17297 0gc0g 17484 Mndcmnd 18747 MndHom cmhm 18794 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8868 df-mhm 18796 | 
| This theorem is referenced by: pwspjmhmmgpd 20325 imasmhm 33382 mhphflem 42606 | 
| Copyright terms: Public domain | W3C validator |