![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismhmd | Structured version Visualization version GIF version |
Description: Deduction version of ismhm 18673. (Contributed by SN, 27-Jul-2024.) |
Ref | Expression |
---|---|
ismhmd.b | ⊢ 𝐵 = (Base‘𝑆) |
ismhmd.c | ⊢ 𝐶 = (Base‘𝑇) |
ismhmd.p | ⊢ + = (+g‘𝑆) |
ismhmd.q | ⊢ ⨣ = (+g‘𝑇) |
ismhmd.0 | ⊢ 0 = (0g‘𝑆) |
ismhmd.z | ⊢ 𝑍 = (0g‘𝑇) |
ismhmd.s | ⊢ (𝜑 → 𝑆 ∈ Mnd) |
ismhmd.t | ⊢ (𝜑 → 𝑇 ∈ Mnd) |
ismhmd.f | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
ismhmd.a | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
ismhmd.h | ⊢ (𝜑 → (𝐹‘ 0 ) = 𝑍) |
Ref | Expression |
---|---|
ismhmd | ⊢ (𝜑 → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismhmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Mnd) | |
2 | ismhmd.t | . 2 ⊢ (𝜑 → 𝑇 ∈ Mnd) | |
3 | ismhmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
4 | ismhmd.a | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
5 | 4 | ralrimivva 3201 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
6 | ismhmd.h | . . 3 ⊢ (𝜑 → (𝐹‘ 0 ) = 𝑍) | |
7 | 3, 5, 6 | 3jca 1129 | . 2 ⊢ (𝜑 → (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑍)) |
8 | ismhmd.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
9 | ismhmd.c | . . 3 ⊢ 𝐶 = (Base‘𝑇) | |
10 | ismhmd.p | . . 3 ⊢ + = (+g‘𝑆) | |
11 | ismhmd.q | . . 3 ⊢ ⨣ = (+g‘𝑇) | |
12 | ismhmd.0 | . . 3 ⊢ 0 = (0g‘𝑆) | |
13 | ismhmd.z | . . 3 ⊢ 𝑍 = (0g‘𝑇) | |
14 | 8, 9, 10, 11, 12, 13 | ismhm 18673 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑍))) |
15 | 1, 2, 7, 14 | syl21anbrc 1345 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ⟶wf 6540 ‘cfv 6544 (class class class)co 7409 Basecbs 17144 +gcplusg 17197 0gc0g 17385 Mndcmnd 18625 MndHom cmhm 18669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-map 8822 df-mhm 18671 |
This theorem is referenced by: pwspjmhmmgpd 20141 mhphflem 41168 |
Copyright terms: Public domain | W3C validator |