| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismhmd | Structured version Visualization version GIF version | ||
| Description: Deduction version of ismhm 18768. (Contributed by SN, 27-Jul-2024.) |
| Ref | Expression |
|---|---|
| ismhmd.b | ⊢ 𝐵 = (Base‘𝑆) |
| ismhmd.c | ⊢ 𝐶 = (Base‘𝑇) |
| ismhmd.p | ⊢ + = (+g‘𝑆) |
| ismhmd.q | ⊢ ⨣ = (+g‘𝑇) |
| ismhmd.0 | ⊢ 0 = (0g‘𝑆) |
| ismhmd.z | ⊢ 𝑍 = (0g‘𝑇) |
| ismhmd.s | ⊢ (𝜑 → 𝑆 ∈ Mnd) |
| ismhmd.t | ⊢ (𝜑 → 𝑇 ∈ Mnd) |
| ismhmd.f | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| ismhmd.a | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| ismhmd.h | ⊢ (𝜑 → (𝐹‘ 0 ) = 𝑍) |
| Ref | Expression |
|---|---|
| ismhmd | ⊢ (𝜑 → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismhmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Mnd) | |
| 2 | ismhmd.t | . 2 ⊢ (𝜑 → 𝑇 ∈ Mnd) | |
| 3 | ismhmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
| 4 | ismhmd.a | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
| 5 | 4 | ralrimivva 3188 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| 6 | ismhmd.h | . . 3 ⊢ (𝜑 → (𝐹‘ 0 ) = 𝑍) | |
| 7 | 3, 5, 6 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑍)) |
| 8 | ismhmd.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 9 | ismhmd.c | . . 3 ⊢ 𝐶 = (Base‘𝑇) | |
| 10 | ismhmd.p | . . 3 ⊢ + = (+g‘𝑆) | |
| 11 | ismhmd.q | . . 3 ⊢ ⨣ = (+g‘𝑇) | |
| 12 | ismhmd.0 | . . 3 ⊢ 0 = (0g‘𝑆) | |
| 13 | ismhmd.z | . . 3 ⊢ 𝑍 = (0g‘𝑇) | |
| 14 | 8, 9, 10, 11, 12, 13 | ismhm 18768 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑍))) |
| 15 | 1, 2, 7, 14 | syl21anbrc 1345 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 0gc0g 17458 Mndcmnd 18717 MndHom cmhm 18764 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 df-mhm 18766 |
| This theorem is referenced by: pwspjmhmmgpd 20293 imasmhm 33374 mhphflem 42586 |
| Copyright terms: Public domain | W3C validator |