Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismhmd | Structured version Visualization version GIF version |
Description: Deduction version of ismhm 18347. (Contributed by SN, 27-Jul-2024.) |
Ref | Expression |
---|---|
ismhmd.b | ⊢ 𝐵 = (Base‘𝑆) |
ismhmd.c | ⊢ 𝐶 = (Base‘𝑇) |
ismhmd.p | ⊢ + = (+g‘𝑆) |
ismhmd.q | ⊢ ⨣ = (+g‘𝑇) |
ismhmd.0 | ⊢ 0 = (0g‘𝑆) |
ismhmd.z | ⊢ 𝑍 = (0g‘𝑇) |
ismhmd.s | ⊢ (𝜑 → 𝑆 ∈ Mnd) |
ismhmd.t | ⊢ (𝜑 → 𝑇 ∈ Mnd) |
ismhmd.f | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
ismhmd.a | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
ismhmd.h | ⊢ (𝜑 → (𝐹‘ 0 ) = 𝑍) |
Ref | Expression |
---|---|
ismhmd | ⊢ (𝜑 → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismhmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Mnd) | |
2 | ismhmd.t | . 2 ⊢ (𝜑 → 𝑇 ∈ Mnd) | |
3 | ismhmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
4 | ismhmd.a | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
5 | 4 | ralrimivva 3114 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
6 | ismhmd.h | . . 3 ⊢ (𝜑 → (𝐹‘ 0 ) = 𝑍) | |
7 | 3, 5, 6 | 3jca 1126 | . 2 ⊢ (𝜑 → (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑍)) |
8 | ismhmd.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
9 | ismhmd.c | . . 3 ⊢ 𝐶 = (Base‘𝑇) | |
10 | ismhmd.p | . . 3 ⊢ + = (+g‘𝑆) | |
11 | ismhmd.q | . . 3 ⊢ ⨣ = (+g‘𝑇) | |
12 | ismhmd.0 | . . 3 ⊢ 0 = (0g‘𝑆) | |
13 | ismhmd.z | . . 3 ⊢ 𝑍 = (0g‘𝑇) | |
14 | 8, 9, 10, 11, 12, 13 | ismhm 18347 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑍))) |
15 | 1, 2, 7, 14 | syl21anbrc 1342 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 0gc0g 17067 Mndcmnd 18300 MndHom cmhm 18343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-mhm 18345 |
This theorem is referenced by: pwspjmhmmgpd 40192 mhphflem 40207 |
Copyright terms: Public domain | W3C validator |