Step | Hyp | Ref
| Expression |
1 | | mhmrcl1 18610 |
. . 3
β’ (πΉ β (π MndHom π) β π β Mnd) |
2 | | submrcl 18618 |
. . 3
β’ (π β (SubMndβπ) β π β Mnd) |
3 | 1, 2 | anim12i 614 |
. 2
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (π β Mnd β§ π β Mnd)) |
4 | | eqid 2733 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
5 | | eqid 2733 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
6 | 4, 5 | mhmf 18612 |
. . . 4
β’ (πΉ β (π MndHom π) β πΉ:(Baseβπ)βΆ(Baseβπ)) |
7 | | resmhm2.u |
. . . . . 6
β’ π = (π βΎs π) |
8 | 7 | submbas 18630 |
. . . . 5
β’ (π β (SubMndβπ) β π = (Baseβπ)) |
9 | | eqid 2733 |
. . . . . 6
β’
(Baseβπ) =
(Baseβπ) |
10 | 9 | submss 18625 |
. . . . 5
β’ (π β (SubMndβπ) β π β (Baseβπ)) |
11 | 8, 10 | eqsstrrd 3984 |
. . . 4
β’ (π β (SubMndβπ) β (Baseβπ) β (Baseβπ)) |
12 | | fss 6686 |
. . . 4
β’ ((πΉ:(Baseβπ)βΆ(Baseβπ) β§ (Baseβπ) β (Baseβπ)) β πΉ:(Baseβπ)βΆ(Baseβπ)) |
13 | 6, 11, 12 | syl2an 597 |
. . 3
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β πΉ:(Baseβπ)βΆ(Baseβπ)) |
14 | | eqid 2733 |
. . . . . . . 8
β’
(+gβπ) = (+gβπ) |
15 | | eqid 2733 |
. . . . . . . 8
β’
(+gβπ) = (+gβπ) |
16 | 4, 14, 15 | mhmlin 18614 |
. . . . . . 7
β’ ((πΉ β (π MndHom π) β§ π₯ β (Baseβπ) β§ π¦ β (Baseβπ)) β (πΉβ(π₯(+gβπ)π¦)) = ((πΉβπ₯)(+gβπ)(πΉβπ¦))) |
17 | 16 | 3expb 1121 |
. . . . . 6
β’ ((πΉ β (π MndHom π) β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ))) β (πΉβ(π₯(+gβπ)π¦)) = ((πΉβπ₯)(+gβπ)(πΉβπ¦))) |
18 | 17 | adantlr 714 |
. . . . 5
β’ (((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ))) β (πΉβ(π₯(+gβπ)π¦)) = ((πΉβπ₯)(+gβπ)(πΉβπ¦))) |
19 | | eqid 2733 |
. . . . . . . 8
β’
(+gβπ) = (+gβπ) |
20 | 7, 19 | ressplusg 17176 |
. . . . . . 7
β’ (π β (SubMndβπ) β
(+gβπ) =
(+gβπ)) |
21 | 20 | ad2antlr 726 |
. . . . . 6
β’ (((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ))) β (+gβπ) = (+gβπ)) |
22 | 21 | oveqd 7375 |
. . . . 5
β’ (((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ))) β ((πΉβπ₯)(+gβπ)(πΉβπ¦)) = ((πΉβπ₯)(+gβπ)(πΉβπ¦))) |
23 | 18, 22 | eqtr4d 2776 |
. . . 4
β’ (((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ))) β (πΉβ(π₯(+gβπ)π¦)) = ((πΉβπ₯)(+gβπ)(πΉβπ¦))) |
24 | 23 | ralrimivva 3194 |
. . 3
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β βπ₯ β (Baseβπ)βπ¦ β (Baseβπ)(πΉβ(π₯(+gβπ)π¦)) = ((πΉβπ₯)(+gβπ)(πΉβπ¦))) |
25 | | eqid 2733 |
. . . . . 6
β’
(0gβπ) = (0gβπ) |
26 | | eqid 2733 |
. . . . . 6
β’
(0gβπ) = (0gβπ) |
27 | 25, 26 | mhm0 18615 |
. . . . 5
β’ (πΉ β (π MndHom π) β (πΉβ(0gβπ)) = (0gβπ)) |
28 | 27 | adantr 482 |
. . . 4
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (πΉβ(0gβπ)) = (0gβπ)) |
29 | | eqid 2733 |
. . . . . 6
β’
(0gβπ) = (0gβπ) |
30 | 7, 29 | subm0 18631 |
. . . . 5
β’ (π β (SubMndβπ) β
(0gβπ) =
(0gβπ)) |
31 | 30 | adantl 483 |
. . . 4
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (0gβπ) = (0gβπ)) |
32 | 28, 31 | eqtr4d 2776 |
. . 3
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (πΉβ(0gβπ)) = (0gβπ)) |
33 | 13, 24, 32 | 3jca 1129 |
. 2
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (πΉ:(Baseβπ)βΆ(Baseβπ) β§ βπ₯ β (Baseβπ)βπ¦ β (Baseβπ)(πΉβ(π₯(+gβπ)π¦)) = ((πΉβπ₯)(+gβπ)(πΉβπ¦)) β§ (πΉβ(0gβπ)) = (0gβπ))) |
34 | 4, 9, 14, 19, 25, 29 | ismhm 18608 |
. 2
β’ (πΉ β (π MndHom π) β ((π β Mnd β§ π β Mnd) β§ (πΉ:(Baseβπ)βΆ(Baseβπ) β§ βπ₯ β (Baseβπ)βπ¦ β (Baseβπ)(πΉβ(π₯(+gβπ)π¦)) = ((πΉβπ₯)(+gβπ)(πΉβπ¦)) β§ (πΉβ(0gβπ)) = (0gβπ)))) |
35 | 3, 33, 34 | sylanbrc 584 |
1
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β πΉ β (π MndHom π)) |