MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmhm2 Structured version   Visualization version   GIF version

Theorem resmhm2 18713
Description: One direction of resmhm2b 18714. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypothesis
Ref Expression
resmhm2.u 𝑈 = (𝑇s 𝑋)
Assertion
Ref Expression
resmhm2 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑇))

Proof of Theorem resmhm2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl1 18679 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑈) → 𝑆 ∈ Mnd)
2 submrcl 18694 . . 3 (𝑋 ∈ (SubMnd‘𝑇) → 𝑇 ∈ Mnd)
31, 2anim12i 613 . 2 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → (𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd))
4 eqid 2729 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
5 eqid 2729 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
64, 5mhmf 18681 . . . 4 (𝐹 ∈ (𝑆 MndHom 𝑈) → 𝐹:(Base‘𝑆)⟶(Base‘𝑈))
7 resmhm2.u . . . . . 6 𝑈 = (𝑇s 𝑋)
87submbas 18706 . . . . 5 (𝑋 ∈ (SubMnd‘𝑇) → 𝑋 = (Base‘𝑈))
9 eqid 2729 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
109submss 18701 . . . . 5 (𝑋 ∈ (SubMnd‘𝑇) → 𝑋 ⊆ (Base‘𝑇))
118, 10eqsstrrd 3973 . . . 4 (𝑋 ∈ (SubMnd‘𝑇) → (Base‘𝑈) ⊆ (Base‘𝑇))
12 fss 6672 . . . 4 ((𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ (Base‘𝑈) ⊆ (Base‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
136, 11, 12syl2an 596 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
14 eqid 2729 . . . . . . . 8 (+g𝑆) = (+g𝑆)
15 eqid 2729 . . . . . . . 8 (+g𝑈) = (+g𝑈)
164, 14, 15mhmlin 18685 . . . . . . 7 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
17163expb 1120 . . . . . 6 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
1817adantlr 715 . . . . 5 (((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
19 eqid 2729 . . . . . . . 8 (+g𝑇) = (+g𝑇)
207, 19ressplusg 17213 . . . . . . 7 (𝑋 ∈ (SubMnd‘𝑇) → (+g𝑇) = (+g𝑈))
2120ad2antlr 727 . . . . . 6 (((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (+g𝑇) = (+g𝑈))
2221oveqd 7370 . . . . 5 (((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
2318, 22eqtr4d 2767 . . . 4 (((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2423ralrimivva 3172 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
25 eqid 2729 . . . . . 6 (0g𝑆) = (0g𝑆)
26 eqid 2729 . . . . . 6 (0g𝑈) = (0g𝑈)
2725, 26mhm0 18686 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑈) → (𝐹‘(0g𝑆)) = (0g𝑈))
2827adantr 480 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → (𝐹‘(0g𝑆)) = (0g𝑈))
29 eqid 2729 . . . . . 6 (0g𝑇) = (0g𝑇)
307, 29subm0 18707 . . . . 5 (𝑋 ∈ (SubMnd‘𝑇) → (0g𝑇) = (0g𝑈))
3130adantl 481 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → (0g𝑇) = (0g𝑈))
3228, 31eqtr4d 2767 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → (𝐹‘(0g𝑆)) = (0g𝑇))
3313, 24, 323jca 1128 . 2 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇)))
344, 9, 14, 19, 25, 29ismhm 18677 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇))))
353, 33, 34sylanbrc 583 1 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3905  wf 6482  cfv 6486  (class class class)co 7353  Basecbs 17138  s cress 17159  +gcplusg 17179  0gc0g 17361  Mndcmnd 18626   MndHom cmhm 18673  SubMndcsubmnd 18674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676
This theorem is referenced by:  resmhm2b  18714  resghm2  19130  zrhpsgnmhm  21509  lgseisenlem4  27305
  Copyright terms: Public domain W3C validator