MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmhm2 Structured version   Visualization version   GIF version

Theorem resmhm2 18460
Description: One direction of resmhm2b 18461. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypothesis
Ref Expression
resmhm2.u 𝑈 = (𝑇s 𝑋)
Assertion
Ref Expression
resmhm2 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑇))

Proof of Theorem resmhm2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl1 18433 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑈) → 𝑆 ∈ Mnd)
2 submrcl 18441 . . 3 (𝑋 ∈ (SubMnd‘𝑇) → 𝑇 ∈ Mnd)
31, 2anim12i 613 . 2 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → (𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd))
4 eqid 2738 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
5 eqid 2738 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
64, 5mhmf 18435 . . . 4 (𝐹 ∈ (𝑆 MndHom 𝑈) → 𝐹:(Base‘𝑆)⟶(Base‘𝑈))
7 resmhm2.u . . . . . 6 𝑈 = (𝑇s 𝑋)
87submbas 18453 . . . . 5 (𝑋 ∈ (SubMnd‘𝑇) → 𝑋 = (Base‘𝑈))
9 eqid 2738 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
109submss 18448 . . . . 5 (𝑋 ∈ (SubMnd‘𝑇) → 𝑋 ⊆ (Base‘𝑇))
118, 10eqsstrrd 3960 . . . 4 (𝑋 ∈ (SubMnd‘𝑇) → (Base‘𝑈) ⊆ (Base‘𝑇))
12 fss 6617 . . . 4 ((𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ (Base‘𝑈) ⊆ (Base‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
136, 11, 12syl2an 596 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
14 eqid 2738 . . . . . . . 8 (+g𝑆) = (+g𝑆)
15 eqid 2738 . . . . . . . 8 (+g𝑈) = (+g𝑈)
164, 14, 15mhmlin 18437 . . . . . . 7 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
17163expb 1119 . . . . . 6 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
1817adantlr 712 . . . . 5 (((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
19 eqid 2738 . . . . . . . 8 (+g𝑇) = (+g𝑇)
207, 19ressplusg 17000 . . . . . . 7 (𝑋 ∈ (SubMnd‘𝑇) → (+g𝑇) = (+g𝑈))
2120ad2antlr 724 . . . . . 6 (((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (+g𝑇) = (+g𝑈))
2221oveqd 7292 . . . . 5 (((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
2318, 22eqtr4d 2781 . . . 4 (((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2423ralrimivva 3123 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
25 eqid 2738 . . . . . 6 (0g𝑆) = (0g𝑆)
26 eqid 2738 . . . . . 6 (0g𝑈) = (0g𝑈)
2725, 26mhm0 18438 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑈) → (𝐹‘(0g𝑆)) = (0g𝑈))
2827adantr 481 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → (𝐹‘(0g𝑆)) = (0g𝑈))
29 eqid 2738 . . . . . 6 (0g𝑇) = (0g𝑇)
307, 29subm0 18454 . . . . 5 (𝑋 ∈ (SubMnd‘𝑇) → (0g𝑇) = (0g𝑈))
3130adantl 482 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → (0g𝑇) = (0g𝑈))
3228, 31eqtr4d 2781 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → (𝐹‘(0g𝑆)) = (0g𝑇))
3313, 24, 323jca 1127 . 2 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇)))
344, 9, 14, 19, 25, 29ismhm 18432 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇))))
353, 33, 34sylanbrc 583 1 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wss 3887  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  +gcplusg 16962  0gc0g 17150  Mndcmnd 18385   MndHom cmhm 18428  SubMndcsubmnd 18429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431
This theorem is referenced by:  resmhm2b  18461  resghm2  18851  zrhpsgnmhm  20789  lgseisenlem4  26526
  Copyright terms: Public domain W3C validator