| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1192 |
. . . 4
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑦 ∈ 𝐼) → 𝐹 ∈ (𝑀 MndHom 𝑁)) |
| 2 | | elmapi 8889 |
. . . . . 6
⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝑋:𝐼⟶𝐵) |
| 3 | 2 | 3ad2ant2 1135 |
. . . . 5
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → 𝑋:𝐼⟶𝐵) |
| 4 | 3 | ffvelcdmda 7104 |
. . . 4
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑦 ∈ 𝐼) → (𝑋‘𝑦) ∈ 𝐵) |
| 5 | | elmapi 8889 |
. . . . . 6
⊢ (𝑌 ∈ (𝐵 ↑m 𝐼) → 𝑌:𝐼⟶𝐵) |
| 6 | 5 | 3ad2ant3 1136 |
. . . . 5
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → 𝑌:𝐼⟶𝐵) |
| 7 | 6 | ffvelcdmda 7104 |
. . . 4
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑦 ∈ 𝐼) → (𝑌‘𝑦) ∈ 𝐵) |
| 8 | | mhmvlin.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑀) |
| 9 | | mhmvlin.p |
. . . . 5
⊢ + =
(+g‘𝑀) |
| 10 | | mhmvlin.q |
. . . . 5
⊢ ⨣ =
(+g‘𝑁) |
| 11 | 8, 9, 10 | mhmlin 18806 |
. . . 4
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ (𝑋‘𝑦) ∈ 𝐵 ∧ (𝑌‘𝑦) ∈ 𝐵) → (𝐹‘((𝑋‘𝑦) + (𝑌‘𝑦))) = ((𝐹‘(𝑋‘𝑦)) ⨣ (𝐹‘(𝑌‘𝑦)))) |
| 12 | 1, 4, 7, 11 | syl3anc 1373 |
. . 3
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑦 ∈ 𝐼) → (𝐹‘((𝑋‘𝑦) + (𝑌‘𝑦))) = ((𝐹‘(𝑋‘𝑦)) ⨣ (𝐹‘(𝑌‘𝑦)))) |
| 13 | 12 | mpteq2dva 5242 |
. 2
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → (𝑦 ∈ 𝐼 ↦ (𝐹‘((𝑋‘𝑦) + (𝑌‘𝑦)))) = (𝑦 ∈ 𝐼 ↦ ((𝐹‘(𝑋‘𝑦)) ⨣ (𝐹‘(𝑌‘𝑦))))) |
| 14 | | mhmrcl1 18800 |
. . . . . 6
⊢ (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝑀 ∈ Mnd) |
| 15 | 14 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑦 ∈ 𝐼) → 𝑀 ∈ Mnd) |
| 16 | 15 | 3ad2antl1 1186 |
. . . 4
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑦 ∈ 𝐼) → 𝑀 ∈ Mnd) |
| 17 | 8, 9 | mndcl 18755 |
. . . 4
⊢ ((𝑀 ∈ Mnd ∧ (𝑋‘𝑦) ∈ 𝐵 ∧ (𝑌‘𝑦) ∈ 𝐵) → ((𝑋‘𝑦) + (𝑌‘𝑦)) ∈ 𝐵) |
| 18 | 16, 4, 7, 17 | syl3anc 1373 |
. . 3
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑦 ∈ 𝐼) → ((𝑋‘𝑦) + (𝑌‘𝑦)) ∈ 𝐵) |
| 19 | | elmapex 8888 |
. . . . . 6
⊢ (𝑌 ∈ (𝐵 ↑m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V)) |
| 20 | 19 | simprd 495 |
. . . . 5
⊢ (𝑌 ∈ (𝐵 ↑m 𝐼) → 𝐼 ∈ V) |
| 21 | 20 | 3ad2ant3 1136 |
. . . 4
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → 𝐼 ∈ V) |
| 22 | 3 | feqmptd 6977 |
. . . 4
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → 𝑋 = (𝑦 ∈ 𝐼 ↦ (𝑋‘𝑦))) |
| 23 | 6 | feqmptd 6977 |
. . . 4
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → 𝑌 = (𝑦 ∈ 𝐼 ↦ (𝑌‘𝑦))) |
| 24 | 21, 4, 7, 22, 23 | offval2 7717 |
. . 3
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + 𝑌) = (𝑦 ∈ 𝐼 ↦ ((𝑋‘𝑦) + (𝑌‘𝑦)))) |
| 25 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝑁) =
(Base‘𝑁) |
| 26 | 8, 25 | mhmf 18802 |
. . . . 5
⊢ (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝐹:𝐵⟶(Base‘𝑁)) |
| 27 | 26 | 3ad2ant1 1134 |
. . . 4
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → 𝐹:𝐵⟶(Base‘𝑁)) |
| 28 | 27 | feqmptd 6977 |
. . 3
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → 𝐹 = (𝑧 ∈ 𝐵 ↦ (𝐹‘𝑧))) |
| 29 | | fveq2 6906 |
. . 3
⊢ (𝑧 = ((𝑋‘𝑦) + (𝑌‘𝑦)) → (𝐹‘𝑧) = (𝐹‘((𝑋‘𝑦) + (𝑌‘𝑦)))) |
| 30 | 18, 24, 28, 29 | fmptco 7149 |
. 2
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → (𝐹 ∘ (𝑋 ∘f + 𝑌)) = (𝑦 ∈ 𝐼 ↦ (𝐹‘((𝑋‘𝑦) + (𝑌‘𝑦))))) |
| 31 | | fvexd 6921 |
. . 3
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑦 ∈ 𝐼) → (𝐹‘(𝑋‘𝑦)) ∈ V) |
| 32 | | fvexd 6921 |
. . 3
⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑦 ∈ 𝐼) → (𝐹‘(𝑌‘𝑦)) ∈ V) |
| 33 | | fcompt 7153 |
. . . 4
⊢ ((𝐹:𝐵⟶(Base‘𝑁) ∧ 𝑋:𝐼⟶𝐵) → (𝐹 ∘ 𝑋) = (𝑦 ∈ 𝐼 ↦ (𝐹‘(𝑋‘𝑦)))) |
| 34 | 27, 3, 33 | syl2anc 584 |
. . 3
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → (𝐹 ∘ 𝑋) = (𝑦 ∈ 𝐼 ↦ (𝐹‘(𝑋‘𝑦)))) |
| 35 | | fcompt 7153 |
. . . 4
⊢ ((𝐹:𝐵⟶(Base‘𝑁) ∧ 𝑌:𝐼⟶𝐵) → (𝐹 ∘ 𝑌) = (𝑦 ∈ 𝐼 ↦ (𝐹‘(𝑌‘𝑦)))) |
| 36 | 27, 6, 35 | syl2anc 584 |
. . 3
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → (𝐹 ∘ 𝑌) = (𝑦 ∈ 𝐼 ↦ (𝐹‘(𝑌‘𝑦)))) |
| 37 | 21, 31, 32, 34, 36 | offval2 7717 |
. 2
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → ((𝐹 ∘ 𝑋) ∘f ⨣ (𝐹 ∘ 𝑌)) = (𝑦 ∈ 𝐼 ↦ ((𝐹‘(𝑋‘𝑦)) ⨣ (𝐹‘(𝑌‘𝑦))))) |
| 38 | 13, 30, 37 | 3eqtr4d 2787 |
1
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → (𝐹 ∘ (𝑋 ∘f + 𝑌)) = ((𝐹 ∘ 𝑋) ∘f ⨣ (𝐹 ∘ 𝑌))) |