MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmvlin Structured version   Visualization version   GIF version

Theorem mhmvlin 18836
Description: Tuple extension of monoid homomorphisms. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mhmvlin.b 𝐵 = (Base‘𝑀)
mhmvlin.p + = (+g𝑀)
mhmvlin.q = (+g𝑁)
Assertion
Ref Expression
mhmvlin ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝐹 ∘ (𝑋f + 𝑌)) = ((𝐹𝑋) ∘f (𝐹𝑌)))

Proof of Theorem mhmvlin
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1191 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → 𝐹 ∈ (𝑀 MndHom 𝑁))
2 elmapi 8907 . . . . . 6 (𝑋 ∈ (𝐵m 𝐼) → 𝑋:𝐼𝐵)
323ad2ant2 1134 . . . . 5 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝑋:𝐼𝐵)
43ffvelcdmda 7118 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → (𝑋𝑦) ∈ 𝐵)
5 elmapi 8907 . . . . . 6 (𝑌 ∈ (𝐵m 𝐼) → 𝑌:𝐼𝐵)
653ad2ant3 1135 . . . . 5 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝑌:𝐼𝐵)
76ffvelcdmda 7118 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → (𝑌𝑦) ∈ 𝐵)
8 mhmvlin.b . . . . 5 𝐵 = (Base‘𝑀)
9 mhmvlin.p . . . . 5 + = (+g𝑀)
10 mhmvlin.q . . . . 5 = (+g𝑁)
118, 9, 10mhmlin 18828 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ (𝑋𝑦) ∈ 𝐵 ∧ (𝑌𝑦) ∈ 𝐵) → (𝐹‘((𝑋𝑦) + (𝑌𝑦))) = ((𝐹‘(𝑋𝑦)) (𝐹‘(𝑌𝑦))))
121, 4, 7, 11syl3anc 1371 . . 3 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → (𝐹‘((𝑋𝑦) + (𝑌𝑦))) = ((𝐹‘(𝑋𝑦)) (𝐹‘(𝑌𝑦))))
1312mpteq2dva 5266 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝑦𝐼 ↦ (𝐹‘((𝑋𝑦) + (𝑌𝑦)))) = (𝑦𝐼 ↦ ((𝐹‘(𝑋𝑦)) (𝐹‘(𝑌𝑦)))))
14 mhmrcl1 18822 . . . . . 6 (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝑀 ∈ Mnd)
1514adantr 480 . . . . 5 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑦𝐼) → 𝑀 ∈ Mnd)
16153ad2antl1 1185 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → 𝑀 ∈ Mnd)
178, 9mndcl 18780 . . . 4 ((𝑀 ∈ Mnd ∧ (𝑋𝑦) ∈ 𝐵 ∧ (𝑌𝑦) ∈ 𝐵) → ((𝑋𝑦) + (𝑌𝑦)) ∈ 𝐵)
1816, 4, 7, 17syl3anc 1371 . . 3 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → ((𝑋𝑦) + (𝑌𝑦)) ∈ 𝐵)
19 elmapex 8906 . . . . . 6 (𝑌 ∈ (𝐵m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V))
2019simprd 495 . . . . 5 (𝑌 ∈ (𝐵m 𝐼) → 𝐼 ∈ V)
21203ad2ant3 1135 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝐼 ∈ V)
223feqmptd 6990 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
236feqmptd 6990 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝑌 = (𝑦𝐼 ↦ (𝑌𝑦)))
2421, 4, 7, 22, 23offval2 7734 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝑋f + 𝑌) = (𝑦𝐼 ↦ ((𝑋𝑦) + (𝑌𝑦))))
25 eqid 2740 . . . . . 6 (Base‘𝑁) = (Base‘𝑁)
268, 25mhmf 18824 . . . . 5 (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝐹:𝐵⟶(Base‘𝑁))
27263ad2ant1 1133 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝐹:𝐵⟶(Base‘𝑁))
2827feqmptd 6990 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝐹 = (𝑧𝐵 ↦ (𝐹𝑧)))
29 fveq2 6920 . . 3 (𝑧 = ((𝑋𝑦) + (𝑌𝑦)) → (𝐹𝑧) = (𝐹‘((𝑋𝑦) + (𝑌𝑦))))
3018, 24, 28, 29fmptco 7163 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝐹 ∘ (𝑋f + 𝑌)) = (𝑦𝐼 ↦ (𝐹‘((𝑋𝑦) + (𝑌𝑦)))))
31 fvexd 6935 . . 3 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → (𝐹‘(𝑋𝑦)) ∈ V)
32 fvexd 6935 . . 3 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → (𝐹‘(𝑌𝑦)) ∈ V)
33 fcompt 7167 . . . 4 ((𝐹:𝐵⟶(Base‘𝑁) ∧ 𝑋:𝐼𝐵) → (𝐹𝑋) = (𝑦𝐼 ↦ (𝐹‘(𝑋𝑦))))
3427, 3, 33syl2anc 583 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝐹𝑋) = (𝑦𝐼 ↦ (𝐹‘(𝑋𝑦))))
35 fcompt 7167 . . . 4 ((𝐹:𝐵⟶(Base‘𝑁) ∧ 𝑌:𝐼𝐵) → (𝐹𝑌) = (𝑦𝐼 ↦ (𝐹‘(𝑌𝑦))))
3627, 6, 35syl2anc 583 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝐹𝑌) = (𝑦𝐼 ↦ (𝐹‘(𝑌𝑦))))
3721, 31, 32, 34, 36offval2 7734 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → ((𝐹𝑋) ∘f (𝐹𝑌)) = (𝑦𝐼 ↦ ((𝐹‘(𝑋𝑦)) (𝐹‘(𝑌𝑦)))))
3813, 30, 373eqtr4d 2790 1 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝐹 ∘ (𝑋f + 𝑌)) = ((𝐹𝑋) ∘f (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cmpt 5249  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  m cmap 8884  Basecbs 17258  +gcplusg 17311  Mndcmnd 18772   MndHom cmhm 18816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-1st 8030  df-2nd 8031  df-map 8886  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818
This theorem is referenced by:  mhmcoaddmpl  22406  mhmcoaddpsr  42505  mendring  43149
  Copyright terms: Public domain W3C validator