MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmvlin Structured version   Visualization version   GIF version

Theorem mhmvlin 20479
Description: Tuple extension of monoid homomorphisms. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mhmvlin.b 𝐵 = (Base‘𝑀)
mhmvlin.p + = (+g𝑀)
mhmvlin.q = (+g𝑁)
Assertion
Ref Expression
mhmvlin ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → (𝐹 ∘ (𝑋𝑓 + 𝑌)) = ((𝐹𝑋) ∘𝑓 (𝐹𝑌)))

Proof of Theorem mhmvlin
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1242 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) ∧ 𝑦𝐼) → 𝐹 ∈ (𝑀 MndHom 𝑁))
2 elmapi 8082 . . . . . 6 (𝑋 ∈ (𝐵𝑚 𝐼) → 𝑋:𝐼𝐵)
323ad2ant2 1164 . . . . 5 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → 𝑋:𝐼𝐵)
43ffvelrnda 6549 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) ∧ 𝑦𝐼) → (𝑋𝑦) ∈ 𝐵)
5 elmapi 8082 . . . . . 6 (𝑌 ∈ (𝐵𝑚 𝐼) → 𝑌:𝐼𝐵)
653ad2ant3 1165 . . . . 5 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → 𝑌:𝐼𝐵)
76ffvelrnda 6549 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) ∧ 𝑦𝐼) → (𝑌𝑦) ∈ 𝐵)
8 mhmvlin.b . . . . 5 𝐵 = (Base‘𝑀)
9 mhmvlin.p . . . . 5 + = (+g𝑀)
10 mhmvlin.q . . . . 5 = (+g𝑁)
118, 9, 10mhmlin 17610 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ (𝑋𝑦) ∈ 𝐵 ∧ (𝑌𝑦) ∈ 𝐵) → (𝐹‘((𝑋𝑦) + (𝑌𝑦))) = ((𝐹‘(𝑋𝑦)) (𝐹‘(𝑌𝑦))))
121, 4, 7, 11syl3anc 1490 . . 3 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) ∧ 𝑦𝐼) → (𝐹‘((𝑋𝑦) + (𝑌𝑦))) = ((𝐹‘(𝑋𝑦)) (𝐹‘(𝑌𝑦))))
1312mpteq2dva 4903 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → (𝑦𝐼 ↦ (𝐹‘((𝑋𝑦) + (𝑌𝑦)))) = (𝑦𝐼 ↦ ((𝐹‘(𝑋𝑦)) (𝐹‘(𝑌𝑦)))))
14 mhmrcl1 17606 . . . . . 6 (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝑀 ∈ Mnd)
1514adantr 472 . . . . 5 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑦𝐼) → 𝑀 ∈ Mnd)
16153ad2antl1 1236 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) ∧ 𝑦𝐼) → 𝑀 ∈ Mnd)
178, 9mndcl 17569 . . . 4 ((𝑀 ∈ Mnd ∧ (𝑋𝑦) ∈ 𝐵 ∧ (𝑌𝑦) ∈ 𝐵) → ((𝑋𝑦) + (𝑌𝑦)) ∈ 𝐵)
1816, 4, 7, 17syl3anc 1490 . . 3 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) ∧ 𝑦𝐼) → ((𝑋𝑦) + (𝑌𝑦)) ∈ 𝐵)
19 elmapex 8081 . . . . . 6 (𝑌 ∈ (𝐵𝑚 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V))
2019simprd 489 . . . . 5 (𝑌 ∈ (𝐵𝑚 𝐼) → 𝐼 ∈ V)
21203ad2ant3 1165 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → 𝐼 ∈ V)
223feqmptd 6438 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → 𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
236feqmptd 6438 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → 𝑌 = (𝑦𝐼 ↦ (𝑌𝑦)))
2421, 4, 7, 22, 23offval2 7112 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → (𝑋𝑓 + 𝑌) = (𝑦𝐼 ↦ ((𝑋𝑦) + (𝑌𝑦))))
25 eqid 2765 . . . . . 6 (Base‘𝑁) = (Base‘𝑁)
268, 25mhmf 17608 . . . . 5 (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝐹:𝐵⟶(Base‘𝑁))
27263ad2ant1 1163 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → 𝐹:𝐵⟶(Base‘𝑁))
2827feqmptd 6438 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → 𝐹 = (𝑧𝐵 ↦ (𝐹𝑧)))
29 fveq2 6375 . . 3 (𝑧 = ((𝑋𝑦) + (𝑌𝑦)) → (𝐹𝑧) = (𝐹‘((𝑋𝑦) + (𝑌𝑦))))
3018, 24, 28, 29fmptco 6587 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → (𝐹 ∘ (𝑋𝑓 + 𝑌)) = (𝑦𝐼 ↦ (𝐹‘((𝑋𝑦) + (𝑌𝑦)))))
31 fvexd 6390 . . 3 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) ∧ 𝑦𝐼) → (𝐹‘(𝑋𝑦)) ∈ V)
32 fvexd 6390 . . 3 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) ∧ 𝑦𝐼) → (𝐹‘(𝑌𝑦)) ∈ V)
33 fcompt 6591 . . . 4 ((𝐹:𝐵⟶(Base‘𝑁) ∧ 𝑋:𝐼𝐵) → (𝐹𝑋) = (𝑦𝐼 ↦ (𝐹‘(𝑋𝑦))))
3427, 3, 33syl2anc 579 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → (𝐹𝑋) = (𝑦𝐼 ↦ (𝐹‘(𝑋𝑦))))
35 fcompt 6591 . . . 4 ((𝐹:𝐵⟶(Base‘𝑁) ∧ 𝑌:𝐼𝐵) → (𝐹𝑌) = (𝑦𝐼 ↦ (𝐹‘(𝑌𝑦))))
3627, 6, 35syl2anc 579 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → (𝐹𝑌) = (𝑦𝐼 ↦ (𝐹‘(𝑌𝑦))))
3721, 31, 32, 34, 36offval2 7112 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → ((𝐹𝑋) ∘𝑓 (𝐹𝑌)) = (𝑦𝐼 ↦ ((𝐹‘(𝑋𝑦)) (𝐹‘(𝑌𝑦)))))
3813, 30, 373eqtr4d 2809 1 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → (𝐹 ∘ (𝑋𝑓 + 𝑌)) = ((𝐹𝑋) ∘𝑓 (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  Vcvv 3350  cmpt 4888  ccom 5281  wf 6064  cfv 6068  (class class class)co 6842  𝑓 cof 7093  𝑚 cmap 8060  Basecbs 16132  +gcplusg 16216  Mndcmnd 17562   MndHom cmhm 17601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-1st 7366  df-2nd 7367  df-map 8062  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-mhm 17603
This theorem is referenced by:  mendring  38371
  Copyright terms: Public domain W3C validator