Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmvlin Structured version   Visualization version   GIF version

Theorem mhmvlin 21099
 Description: Tuple extension of monoid homomorphisms. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mhmvlin.b 𝐵 = (Base‘𝑀)
mhmvlin.p + = (+g𝑀)
mhmvlin.q = (+g𝑁)
Assertion
Ref Expression
mhmvlin ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝐹 ∘ (𝑋f + 𝑌)) = ((𝐹𝑋) ∘f (𝐹𝑌)))

Proof of Theorem mhmvlin
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1188 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → 𝐹 ∈ (𝑀 MndHom 𝑁))
2 elmapi 8438 . . . . . 6 (𝑋 ∈ (𝐵m 𝐼) → 𝑋:𝐼𝐵)
323ad2ant2 1131 . . . . 5 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝑋:𝐼𝐵)
43ffvelrnda 6842 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → (𝑋𝑦) ∈ 𝐵)
5 elmapi 8438 . . . . . 6 (𝑌 ∈ (𝐵m 𝐼) → 𝑌:𝐼𝐵)
653ad2ant3 1132 . . . . 5 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝑌:𝐼𝐵)
76ffvelrnda 6842 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → (𝑌𝑦) ∈ 𝐵)
8 mhmvlin.b . . . . 5 𝐵 = (Base‘𝑀)
9 mhmvlin.p . . . . 5 + = (+g𝑀)
10 mhmvlin.q . . . . 5 = (+g𝑁)
118, 9, 10mhmlin 18029 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ (𝑋𝑦) ∈ 𝐵 ∧ (𝑌𝑦) ∈ 𝐵) → (𝐹‘((𝑋𝑦) + (𝑌𝑦))) = ((𝐹‘(𝑋𝑦)) (𝐹‘(𝑌𝑦))))
121, 4, 7, 11syl3anc 1368 . . 3 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → (𝐹‘((𝑋𝑦) + (𝑌𝑦))) = ((𝐹‘(𝑋𝑦)) (𝐹‘(𝑌𝑦))))
1312mpteq2dva 5127 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝑦𝐼 ↦ (𝐹‘((𝑋𝑦) + (𝑌𝑦)))) = (𝑦𝐼 ↦ ((𝐹‘(𝑋𝑦)) (𝐹‘(𝑌𝑦)))))
14 mhmrcl1 18025 . . . . . 6 (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝑀 ∈ Mnd)
1514adantr 484 . . . . 5 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑦𝐼) → 𝑀 ∈ Mnd)
16153ad2antl1 1182 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → 𝑀 ∈ Mnd)
178, 9mndcl 17985 . . . 4 ((𝑀 ∈ Mnd ∧ (𝑋𝑦) ∈ 𝐵 ∧ (𝑌𝑦) ∈ 𝐵) → ((𝑋𝑦) + (𝑌𝑦)) ∈ 𝐵)
1816, 4, 7, 17syl3anc 1368 . . 3 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → ((𝑋𝑦) + (𝑌𝑦)) ∈ 𝐵)
19 elmapex 8437 . . . . . 6 (𝑌 ∈ (𝐵m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V))
2019simprd 499 . . . . 5 (𝑌 ∈ (𝐵m 𝐼) → 𝐼 ∈ V)
21203ad2ant3 1132 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝐼 ∈ V)
223feqmptd 6721 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
236feqmptd 6721 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝑌 = (𝑦𝐼 ↦ (𝑌𝑦)))
2421, 4, 7, 22, 23offval2 7424 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝑋f + 𝑌) = (𝑦𝐼 ↦ ((𝑋𝑦) + (𝑌𝑦))))
25 eqid 2758 . . . . . 6 (Base‘𝑁) = (Base‘𝑁)
268, 25mhmf 18027 . . . . 5 (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝐹:𝐵⟶(Base‘𝑁))
27263ad2ant1 1130 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝐹:𝐵⟶(Base‘𝑁))
2827feqmptd 6721 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝐹 = (𝑧𝐵 ↦ (𝐹𝑧)))
29 fveq2 6658 . . 3 (𝑧 = ((𝑋𝑦) + (𝑌𝑦)) → (𝐹𝑧) = (𝐹‘((𝑋𝑦) + (𝑌𝑦))))
3018, 24, 28, 29fmptco 6882 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝐹 ∘ (𝑋f + 𝑌)) = (𝑦𝐼 ↦ (𝐹‘((𝑋𝑦) + (𝑌𝑦)))))
31 fvexd 6673 . . 3 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → (𝐹‘(𝑋𝑦)) ∈ V)
32 fvexd 6673 . . 3 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → (𝐹‘(𝑌𝑦)) ∈ V)
33 fcompt 6886 . . . 4 ((𝐹:𝐵⟶(Base‘𝑁) ∧ 𝑋:𝐼𝐵) → (𝐹𝑋) = (𝑦𝐼 ↦ (𝐹‘(𝑋𝑦))))
3427, 3, 33syl2anc 587 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝐹𝑋) = (𝑦𝐼 ↦ (𝐹‘(𝑋𝑦))))
35 fcompt 6886 . . . 4 ((𝐹:𝐵⟶(Base‘𝑁) ∧ 𝑌:𝐼𝐵) → (𝐹𝑌) = (𝑦𝐼 ↦ (𝐹‘(𝑌𝑦))))
3627, 6, 35syl2anc 587 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝐹𝑌) = (𝑦𝐼 ↦ (𝐹‘(𝑌𝑦))))
3721, 31, 32, 34, 36offval2 7424 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → ((𝐹𝑋) ∘f (𝐹𝑌)) = (𝑦𝐼 ↦ ((𝐹‘(𝑋𝑦)) (𝐹‘(𝑌𝑦)))))
3813, 30, 373eqtr4d 2803 1 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝐹 ∘ (𝑋f + 𝑌)) = ((𝐹𝑋) ∘f (𝐹𝑌)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  Vcvv 3409   ↦ cmpt 5112   ∘ ccom 5528  ⟶wf 6331  ‘cfv 6335  (class class class)co 7150   ∘f cof 7403   ↑m cmap 8416  Basecbs 16541  +gcplusg 16623  Mndcmnd 17977   MndHom cmhm 18020 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-1st 7693  df-2nd 7694  df-map 8418  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-mhm 18022 This theorem is referenced by:  mendring  40509
 Copyright terms: Public domain W3C validator