| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhmcompl | Structured version Visualization version GIF version | ||
| Description: The composition of a monoid homomorphism and a polynomial is a polynomial. (Contributed by SN, 7-Feb-2025.) |
| Ref | Expression |
|---|---|
| mhmcompl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mhmcompl.q | ⊢ 𝑄 = (𝐼 mPoly 𝑆) |
| mhmcompl.b | ⊢ 𝐵 = (Base‘𝑃) |
| mhmcompl.c | ⊢ 𝐶 = (Base‘𝑄) |
| mhmcompl.h | ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) |
| mhmcompl.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mhmcompl | ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6876 | . . . 4 ⊢ (𝜑 → (Base‘𝑆) ∈ V) | |
| 2 | eqid 2730 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 3 | ovexd 7425 | . . . . 5 ⊢ (𝜑 → (ℕ0 ↑m 𝐼) ∈ V) | |
| 4 | 2, 3 | rabexd 5298 | . . . 4 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) |
| 5 | mhmcompl.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) | |
| 6 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 8 | 6, 7 | mhmf 18723 | . . . . . 6 ⊢ (𝐻 ∈ (𝑅 MndHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆)) |
| 9 | 5, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐻:(Base‘𝑅)⟶(Base‘𝑆)) |
| 10 | mhmcompl.p | . . . . . 6 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 11 | mhmcompl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
| 12 | mhmcompl.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 13 | 10, 6, 11, 2, 12 | mplelf 21914 | . . . . 5 ⊢ (𝜑 → 𝐹:{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 14 | 9, 13 | fcod 6716 | . . . 4 ⊢ (𝜑 → (𝐻 ∘ 𝐹):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑆)) |
| 15 | 1, 4, 14 | elmapdd 8817 | . . 3 ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ ((Base‘𝑆) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 16 | eqid 2730 | . . . 4 ⊢ (𝐼 mPwSer 𝑆) = (𝐼 mPwSer 𝑆) | |
| 17 | eqid 2730 | . . . 4 ⊢ (Base‘(𝐼 mPwSer 𝑆)) = (Base‘(𝐼 mPwSer 𝑆)) | |
| 18 | 10, 11 | mplrcl 21910 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → 𝐼 ∈ V) |
| 19 | 12, 18 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) |
| 20 | 16, 7, 2, 17, 19 | psrbas 21849 | . . 3 ⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑆)) = ((Base‘𝑆) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 21 | 15, 20 | eleqtrrd 2832 | . 2 ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ (Base‘(𝐼 mPwSer 𝑆))) |
| 22 | fvexd 6876 | . . 3 ⊢ (𝜑 → (0g‘𝑆) ∈ V) | |
| 23 | mhmrcl1 18721 | . . . . 5 ⊢ (𝐻 ∈ (𝑅 MndHom 𝑆) → 𝑅 ∈ Mnd) | |
| 24 | 5, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 25 | eqid 2730 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 26 | 6, 25 | mndidcl 18683 | . . . 4 ⊢ (𝑅 ∈ Mnd → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 27 | 24, 26 | syl 17 | . . 3 ⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 28 | ssidd 3973 | . . 3 ⊢ (𝜑 → (Base‘𝑅) ⊆ (Base‘𝑅)) | |
| 29 | fvexd 6876 | . . 3 ⊢ (𝜑 → (Base‘𝑅) ∈ V) | |
| 30 | 10, 11, 25, 12 | mplelsfi 21911 | . . 3 ⊢ (𝜑 → 𝐹 finSupp (0g‘𝑅)) |
| 31 | eqid 2730 | . . . . 5 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 32 | 25, 31 | mhm0 18728 | . . . 4 ⊢ (𝐻 ∈ (𝑅 MndHom 𝑆) → (𝐻‘(0g‘𝑅)) = (0g‘𝑆)) |
| 33 | 5, 32 | syl 17 | . . 3 ⊢ (𝜑 → (𝐻‘(0g‘𝑅)) = (0g‘𝑆)) |
| 34 | 22, 27, 13, 9, 28, 4, 29, 30, 33 | fsuppcor 9362 | . 2 ⊢ (𝜑 → (𝐻 ∘ 𝐹) finSupp (0g‘𝑆)) |
| 35 | mhmcompl.q | . . 3 ⊢ 𝑄 = (𝐼 mPoly 𝑆) | |
| 36 | mhmcompl.c | . . 3 ⊢ 𝐶 = (Base‘𝑄) | |
| 37 | 35, 16, 17, 31, 36 | mplelbas 21907 | . 2 ⊢ ((𝐻 ∘ 𝐹) ∈ 𝐶 ↔ ((𝐻 ∘ 𝐹) ∈ (Base‘(𝐼 mPwSer 𝑆)) ∧ (𝐻 ∘ 𝐹) finSupp (0g‘𝑆))) |
| 38 | 21, 34, 37 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 class class class wbr 5110 ◡ccnv 5640 “ cima 5644 ∘ ccom 5645 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 Fincfn 8921 finSupp cfsupp 9319 ℕcn 12193 ℕ0cn0 12449 Basecbs 17186 0gc0g 17409 Mndcmnd 18668 MndHom cmhm 18715 mPwSer cmps 21820 mPoly cmpl 21822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-tset 17246 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-psr 21825 df-mpl 21827 |
| This theorem is referenced by: mhmcoaddmpl 22275 rhmcomulmpl 22276 rhmmpl 22277 mhmcoply1 22279 selvcllem4 42576 selvvvval 42580 selvadd 42583 selvmul 42584 |
| Copyright terms: Public domain | W3C validator |