| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhmcompl | Structured version Visualization version GIF version | ||
| Description: The composition of a monoid homomorphism and a polynomial is a polynomial. (Contributed by SN, 7-Feb-2025.) |
| Ref | Expression |
|---|---|
| mhmcompl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mhmcompl.q | ⊢ 𝑄 = (𝐼 mPoly 𝑆) |
| mhmcompl.b | ⊢ 𝐵 = (Base‘𝑃) |
| mhmcompl.c | ⊢ 𝐶 = (Base‘𝑄) |
| mhmcompl.h | ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) |
| mhmcompl.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mhmcompl | ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6837 | . . . 4 ⊢ (𝜑 → (Base‘𝑆) ∈ V) | |
| 2 | eqid 2731 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 3 | ovexd 7381 | . . . . 5 ⊢ (𝜑 → (ℕ0 ↑m 𝐼) ∈ V) | |
| 4 | 2, 3 | rabexd 5278 | . . . 4 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) |
| 5 | mhmcompl.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) | |
| 6 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 8 | 6, 7 | mhmf 18697 | . . . . . 6 ⊢ (𝐻 ∈ (𝑅 MndHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆)) |
| 9 | 5, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐻:(Base‘𝑅)⟶(Base‘𝑆)) |
| 10 | mhmcompl.p | . . . . . 6 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 11 | mhmcompl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
| 12 | mhmcompl.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 13 | 10, 6, 11, 2, 12 | mplelf 21936 | . . . . 5 ⊢ (𝜑 → 𝐹:{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 14 | 9, 13 | fcod 6676 | . . . 4 ⊢ (𝜑 → (𝐻 ∘ 𝐹):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑆)) |
| 15 | 1, 4, 14 | elmapdd 8765 | . . 3 ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ ((Base‘𝑆) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 16 | eqid 2731 | . . . 4 ⊢ (𝐼 mPwSer 𝑆) = (𝐼 mPwSer 𝑆) | |
| 17 | eqid 2731 | . . . 4 ⊢ (Base‘(𝐼 mPwSer 𝑆)) = (Base‘(𝐼 mPwSer 𝑆)) | |
| 18 | 10, 11 | mplrcl 21932 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → 𝐼 ∈ V) |
| 19 | 12, 18 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) |
| 20 | 16, 7, 2, 17, 19 | psrbas 21871 | . . 3 ⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑆)) = ((Base‘𝑆) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 21 | 15, 20 | eleqtrrd 2834 | . 2 ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ (Base‘(𝐼 mPwSer 𝑆))) |
| 22 | fvexd 6837 | . . 3 ⊢ (𝜑 → (0g‘𝑆) ∈ V) | |
| 23 | mhmrcl1 18695 | . . . . 5 ⊢ (𝐻 ∈ (𝑅 MndHom 𝑆) → 𝑅 ∈ Mnd) | |
| 24 | 5, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 25 | eqid 2731 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 26 | 6, 25 | mndidcl 18657 | . . . 4 ⊢ (𝑅 ∈ Mnd → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 27 | 24, 26 | syl 17 | . . 3 ⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 28 | ssidd 3958 | . . 3 ⊢ (𝜑 → (Base‘𝑅) ⊆ (Base‘𝑅)) | |
| 29 | fvexd 6837 | . . 3 ⊢ (𝜑 → (Base‘𝑅) ∈ V) | |
| 30 | 10, 11, 25, 12 | mplelsfi 21933 | . . 3 ⊢ (𝜑 → 𝐹 finSupp (0g‘𝑅)) |
| 31 | eqid 2731 | . . . . 5 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 32 | 25, 31 | mhm0 18702 | . . . 4 ⊢ (𝐻 ∈ (𝑅 MndHom 𝑆) → (𝐻‘(0g‘𝑅)) = (0g‘𝑆)) |
| 33 | 5, 32 | syl 17 | . . 3 ⊢ (𝜑 → (𝐻‘(0g‘𝑅)) = (0g‘𝑆)) |
| 34 | 22, 27, 13, 9, 28, 4, 29, 30, 33 | fsuppcor 9288 | . 2 ⊢ (𝜑 → (𝐻 ∘ 𝐹) finSupp (0g‘𝑆)) |
| 35 | mhmcompl.q | . . 3 ⊢ 𝑄 = (𝐼 mPoly 𝑆) | |
| 36 | mhmcompl.c | . . 3 ⊢ 𝐶 = (Base‘𝑄) | |
| 37 | 35, 16, 17, 31, 36 | mplelbas 21929 | . 2 ⊢ ((𝐻 ∘ 𝐹) ∈ 𝐶 ↔ ((𝐻 ∘ 𝐹) ∈ (Base‘(𝐼 mPwSer 𝑆)) ∧ (𝐻 ∘ 𝐹) finSupp (0g‘𝑆))) |
| 38 | 21, 34, 37 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 class class class wbr 5091 ◡ccnv 5615 “ cima 5619 ∘ ccom 5620 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Fincfn 8869 finSupp cfsupp 9245 ℕcn 12125 ℕ0cn0 12381 Basecbs 17120 0gc0g 17343 Mndcmnd 18642 MndHom cmhm 18689 mPwSer cmps 21842 mPoly cmpl 21844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-tset 17180 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-psr 21847 df-mpl 21849 |
| This theorem is referenced by: mhmcoaddmpl 22297 rhmcomulmpl 22298 rhmmpl 22299 mhmcoply1 22301 selvcllem4 42620 selvvvval 42624 selvadd 42627 selvmul 42628 |
| Copyright terms: Public domain | W3C validator |