![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mhmcompl | Structured version Visualization version GIF version |
Description: The composition of a monoid homomorphism and a polynomial is a polynomial. (Contributed by SN, 7-Feb-2025.) |
Ref | Expression |
---|---|
mhmcompl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mhmcompl.q | ⊢ 𝑄 = (𝐼 mPoly 𝑆) |
mhmcompl.b | ⊢ 𝐵 = (Base‘𝑃) |
mhmcompl.c | ⊢ 𝐶 = (Base‘𝑄) |
mhmcompl.h | ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) |
mhmcompl.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
Ref | Expression |
---|---|
mhmcompl | ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6935 | . . . 4 ⊢ (𝜑 → (Base‘𝑆) ∈ V) | |
2 | eqid 2740 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
3 | ovexd 7483 | . . . . 5 ⊢ (𝜑 → (ℕ0 ↑m 𝐼) ∈ V) | |
4 | 2, 3 | rabexd 5358 | . . . 4 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) |
5 | mhmcompl.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) | |
6 | eqid 2740 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
7 | eqid 2740 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
8 | 6, 7 | mhmf 18824 | . . . . . 6 ⊢ (𝐻 ∈ (𝑅 MndHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆)) |
9 | 5, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐻:(Base‘𝑅)⟶(Base‘𝑆)) |
10 | mhmcompl.p | . . . . . 6 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
11 | mhmcompl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
12 | mhmcompl.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
13 | 10, 6, 11, 2, 12 | mplelf 22041 | . . . . 5 ⊢ (𝜑 → 𝐹:{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
14 | 9, 13 | fcod 6773 | . . . 4 ⊢ (𝜑 → (𝐻 ∘ 𝐹):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑆)) |
15 | 1, 4, 14 | elmapdd 8899 | . . 3 ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ ((Base‘𝑆) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
16 | eqid 2740 | . . . 4 ⊢ (𝐼 mPwSer 𝑆) = (𝐼 mPwSer 𝑆) | |
17 | eqid 2740 | . . . 4 ⊢ (Base‘(𝐼 mPwSer 𝑆)) = (Base‘(𝐼 mPwSer 𝑆)) | |
18 | 10, 11 | mplrcl 22037 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → 𝐼 ∈ V) |
19 | 12, 18 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) |
20 | 16, 7, 2, 17, 19 | psrbas 21976 | . . 3 ⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑆)) = ((Base‘𝑆) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
21 | 15, 20 | eleqtrrd 2847 | . 2 ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ (Base‘(𝐼 mPwSer 𝑆))) |
22 | fvexd 6935 | . . 3 ⊢ (𝜑 → (0g‘𝑆) ∈ V) | |
23 | mhmrcl1 18822 | . . . . 5 ⊢ (𝐻 ∈ (𝑅 MndHom 𝑆) → 𝑅 ∈ Mnd) | |
24 | 5, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
25 | eqid 2740 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
26 | 6, 25 | mndidcl 18787 | . . . 4 ⊢ (𝑅 ∈ Mnd → (0g‘𝑅) ∈ (Base‘𝑅)) |
27 | 24, 26 | syl 17 | . . 3 ⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
28 | ssidd 4032 | . . 3 ⊢ (𝜑 → (Base‘𝑅) ⊆ (Base‘𝑅)) | |
29 | fvexd 6935 | . . 3 ⊢ (𝜑 → (Base‘𝑅) ∈ V) | |
30 | 10, 11, 25, 12, 24 | mplelsfi 22038 | . . 3 ⊢ (𝜑 → 𝐹 finSupp (0g‘𝑅)) |
31 | eqid 2740 | . . . . 5 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
32 | 25, 31 | mhm0 18829 | . . . 4 ⊢ (𝐻 ∈ (𝑅 MndHom 𝑆) → (𝐻‘(0g‘𝑅)) = (0g‘𝑆)) |
33 | 5, 32 | syl 17 | . . 3 ⊢ (𝜑 → (𝐻‘(0g‘𝑅)) = (0g‘𝑆)) |
34 | 22, 27, 13, 9, 28, 4, 29, 30, 33 | fsuppcor 9473 | . 2 ⊢ (𝜑 → (𝐻 ∘ 𝐹) finSupp (0g‘𝑆)) |
35 | mhmcompl.q | . . 3 ⊢ 𝑄 = (𝐼 mPoly 𝑆) | |
36 | mhmcompl.c | . . 3 ⊢ 𝐶 = (Base‘𝑄) | |
37 | 35, 16, 17, 31, 36 | mplelbas 22034 | . 2 ⊢ ((𝐻 ∘ 𝐹) ∈ 𝐶 ↔ ((𝐻 ∘ 𝐹) ∈ (Base‘(𝐼 mPwSer 𝑆)) ∧ (𝐻 ∘ 𝐹) finSupp (0g‘𝑆))) |
38 | 21, 34, 37 | sylanbrc 582 | 1 ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 class class class wbr 5166 ◡ccnv 5699 “ cima 5703 ∘ ccom 5704 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 Fincfn 9003 finSupp cfsupp 9431 ℕcn 12293 ℕ0cn0 12553 Basecbs 17258 0gc0g 17499 Mndcmnd 18772 MndHom cmhm 18816 mPwSer cmps 21947 mPoly cmpl 21949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-tset 17330 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-psr 21952 df-mpl 21954 |
This theorem is referenced by: mhmcoaddmpl 22406 rhmcomulmpl 22407 rhmmpl 22408 mhmcoply1 22410 selvcllem4 42536 selvvvval 42540 selvadd 42543 selvmul 42544 |
Copyright terms: Public domain | W3C validator |