| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhmcompl | Structured version Visualization version GIF version | ||
| Description: The composition of a monoid homomorphism and a polynomial is a polynomial. (Contributed by SN, 7-Feb-2025.) |
| Ref | Expression |
|---|---|
| mhmcompl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mhmcompl.q | ⊢ 𝑄 = (𝐼 mPoly 𝑆) |
| mhmcompl.b | ⊢ 𝐵 = (Base‘𝑃) |
| mhmcompl.c | ⊢ 𝐶 = (Base‘𝑄) |
| mhmcompl.h | ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) |
| mhmcompl.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mhmcompl | ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6873 | . . . 4 ⊢ (𝜑 → (Base‘𝑆) ∈ V) | |
| 2 | eqid 2729 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 3 | ovexd 7422 | . . . . 5 ⊢ (𝜑 → (ℕ0 ↑m 𝐼) ∈ V) | |
| 4 | 2, 3 | rabexd 5295 | . . . 4 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) |
| 5 | mhmcompl.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) | |
| 6 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 8 | 6, 7 | mhmf 18716 | . . . . . 6 ⊢ (𝐻 ∈ (𝑅 MndHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆)) |
| 9 | 5, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐻:(Base‘𝑅)⟶(Base‘𝑆)) |
| 10 | mhmcompl.p | . . . . . 6 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 11 | mhmcompl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
| 12 | mhmcompl.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 13 | 10, 6, 11, 2, 12 | mplelf 21907 | . . . . 5 ⊢ (𝜑 → 𝐹:{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 14 | 9, 13 | fcod 6713 | . . . 4 ⊢ (𝜑 → (𝐻 ∘ 𝐹):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑆)) |
| 15 | 1, 4, 14 | elmapdd 8814 | . . 3 ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ ((Base‘𝑆) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 16 | eqid 2729 | . . . 4 ⊢ (𝐼 mPwSer 𝑆) = (𝐼 mPwSer 𝑆) | |
| 17 | eqid 2729 | . . . 4 ⊢ (Base‘(𝐼 mPwSer 𝑆)) = (Base‘(𝐼 mPwSer 𝑆)) | |
| 18 | 10, 11 | mplrcl 21903 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → 𝐼 ∈ V) |
| 19 | 12, 18 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) |
| 20 | 16, 7, 2, 17, 19 | psrbas 21842 | . . 3 ⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑆)) = ((Base‘𝑆) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 21 | 15, 20 | eleqtrrd 2831 | . 2 ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ (Base‘(𝐼 mPwSer 𝑆))) |
| 22 | fvexd 6873 | . . 3 ⊢ (𝜑 → (0g‘𝑆) ∈ V) | |
| 23 | mhmrcl1 18714 | . . . . 5 ⊢ (𝐻 ∈ (𝑅 MndHom 𝑆) → 𝑅 ∈ Mnd) | |
| 24 | 5, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 25 | eqid 2729 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 26 | 6, 25 | mndidcl 18676 | . . . 4 ⊢ (𝑅 ∈ Mnd → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 27 | 24, 26 | syl 17 | . . 3 ⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 28 | ssidd 3970 | . . 3 ⊢ (𝜑 → (Base‘𝑅) ⊆ (Base‘𝑅)) | |
| 29 | fvexd 6873 | . . 3 ⊢ (𝜑 → (Base‘𝑅) ∈ V) | |
| 30 | 10, 11, 25, 12 | mplelsfi 21904 | . . 3 ⊢ (𝜑 → 𝐹 finSupp (0g‘𝑅)) |
| 31 | eqid 2729 | . . . . 5 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 32 | 25, 31 | mhm0 18721 | . . . 4 ⊢ (𝐻 ∈ (𝑅 MndHom 𝑆) → (𝐻‘(0g‘𝑅)) = (0g‘𝑆)) |
| 33 | 5, 32 | syl 17 | . . 3 ⊢ (𝜑 → (𝐻‘(0g‘𝑅)) = (0g‘𝑆)) |
| 34 | 22, 27, 13, 9, 28, 4, 29, 30, 33 | fsuppcor 9355 | . 2 ⊢ (𝜑 → (𝐻 ∘ 𝐹) finSupp (0g‘𝑆)) |
| 35 | mhmcompl.q | . . 3 ⊢ 𝑄 = (𝐼 mPoly 𝑆) | |
| 36 | mhmcompl.c | . . 3 ⊢ 𝐶 = (Base‘𝑄) | |
| 37 | 35, 16, 17, 31, 36 | mplelbas 21900 | . 2 ⊢ ((𝐻 ∘ 𝐹) ∈ 𝐶 ↔ ((𝐻 ∘ 𝐹) ∈ (Base‘(𝐼 mPwSer 𝑆)) ∧ (𝐻 ∘ 𝐹) finSupp (0g‘𝑆))) |
| 38 | 21, 34, 37 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 class class class wbr 5107 ◡ccnv 5637 “ cima 5641 ∘ ccom 5642 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 Fincfn 8918 finSupp cfsupp 9312 ℕcn 12186 ℕ0cn0 12442 Basecbs 17179 0gc0g 17402 Mndcmnd 18661 MndHom cmhm 18708 mPwSer cmps 21813 mPoly cmpl 21815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-tset 17239 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-psr 21818 df-mpl 21820 |
| This theorem is referenced by: mhmcoaddmpl 22268 rhmcomulmpl 22269 rhmmpl 22270 mhmcoply1 22272 selvcllem4 42569 selvvvval 42573 selvadd 42576 selvmul 42577 |
| Copyright terms: Public domain | W3C validator |