| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhmcompl | Structured version Visualization version GIF version | ||
| Description: The composition of a monoid homomorphism and a polynomial is a polynomial. (Contributed by SN, 7-Feb-2025.) |
| Ref | Expression |
|---|---|
| mhmcompl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mhmcompl.q | ⊢ 𝑄 = (𝐼 mPoly 𝑆) |
| mhmcompl.b | ⊢ 𝐵 = (Base‘𝑃) |
| mhmcompl.c | ⊢ 𝐶 = (Base‘𝑄) |
| mhmcompl.h | ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) |
| mhmcompl.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mhmcompl | ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6921 | . . . 4 ⊢ (𝜑 → (Base‘𝑆) ∈ V) | |
| 2 | eqid 2737 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 3 | ovexd 7466 | . . . . 5 ⊢ (𝜑 → (ℕ0 ↑m 𝐼) ∈ V) | |
| 4 | 2, 3 | rabexd 5340 | . . . 4 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) |
| 5 | mhmcompl.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) | |
| 6 | eqid 2737 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | eqid 2737 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 8 | 6, 7 | mhmf 18802 | . . . . . 6 ⊢ (𝐻 ∈ (𝑅 MndHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆)) |
| 9 | 5, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐻:(Base‘𝑅)⟶(Base‘𝑆)) |
| 10 | mhmcompl.p | . . . . . 6 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 11 | mhmcompl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
| 12 | mhmcompl.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 13 | 10, 6, 11, 2, 12 | mplelf 22018 | . . . . 5 ⊢ (𝜑 → 𝐹:{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 14 | 9, 13 | fcod 6761 | . . . 4 ⊢ (𝜑 → (𝐻 ∘ 𝐹):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑆)) |
| 15 | 1, 4, 14 | elmapdd 8881 | . . 3 ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ ((Base‘𝑆) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 16 | eqid 2737 | . . . 4 ⊢ (𝐼 mPwSer 𝑆) = (𝐼 mPwSer 𝑆) | |
| 17 | eqid 2737 | . . . 4 ⊢ (Base‘(𝐼 mPwSer 𝑆)) = (Base‘(𝐼 mPwSer 𝑆)) | |
| 18 | 10, 11 | mplrcl 22014 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → 𝐼 ∈ V) |
| 19 | 12, 18 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) |
| 20 | 16, 7, 2, 17, 19 | psrbas 21953 | . . 3 ⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑆)) = ((Base‘𝑆) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 21 | 15, 20 | eleqtrrd 2844 | . 2 ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ (Base‘(𝐼 mPwSer 𝑆))) |
| 22 | fvexd 6921 | . . 3 ⊢ (𝜑 → (0g‘𝑆) ∈ V) | |
| 23 | mhmrcl1 18800 | . . . . 5 ⊢ (𝐻 ∈ (𝑅 MndHom 𝑆) → 𝑅 ∈ Mnd) | |
| 24 | 5, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 25 | eqid 2737 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 26 | 6, 25 | mndidcl 18762 | . . . 4 ⊢ (𝑅 ∈ Mnd → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 27 | 24, 26 | syl 17 | . . 3 ⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 28 | ssidd 4007 | . . 3 ⊢ (𝜑 → (Base‘𝑅) ⊆ (Base‘𝑅)) | |
| 29 | fvexd 6921 | . . 3 ⊢ (𝜑 → (Base‘𝑅) ∈ V) | |
| 30 | 10, 11, 25, 12 | mplelsfi 22015 | . . 3 ⊢ (𝜑 → 𝐹 finSupp (0g‘𝑅)) |
| 31 | eqid 2737 | . . . . 5 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 32 | 25, 31 | mhm0 18807 | . . . 4 ⊢ (𝐻 ∈ (𝑅 MndHom 𝑆) → (𝐻‘(0g‘𝑅)) = (0g‘𝑆)) |
| 33 | 5, 32 | syl 17 | . . 3 ⊢ (𝜑 → (𝐻‘(0g‘𝑅)) = (0g‘𝑆)) |
| 34 | 22, 27, 13, 9, 28, 4, 29, 30, 33 | fsuppcor 9444 | . 2 ⊢ (𝜑 → (𝐻 ∘ 𝐹) finSupp (0g‘𝑆)) |
| 35 | mhmcompl.q | . . 3 ⊢ 𝑄 = (𝐼 mPoly 𝑆) | |
| 36 | mhmcompl.c | . . 3 ⊢ 𝐶 = (Base‘𝑄) | |
| 37 | 35, 16, 17, 31, 36 | mplelbas 22011 | . 2 ⊢ ((𝐻 ∘ 𝐹) ∈ 𝐶 ↔ ((𝐻 ∘ 𝐹) ∈ (Base‘(𝐼 mPwSer 𝑆)) ∧ (𝐻 ∘ 𝐹) finSupp (0g‘𝑆))) |
| 38 | 21, 34, 37 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {crab 3436 Vcvv 3480 class class class wbr 5143 ◡ccnv 5684 “ cima 5688 ∘ ccom 5689 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 Fincfn 8985 finSupp cfsupp 9401 ℕcn 12266 ℕ0cn0 12526 Basecbs 17247 0gc0g 17484 Mndcmnd 18747 MndHom cmhm 18794 mPwSer cmps 21924 mPoly cmpl 21926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-tset 17316 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-psr 21929 df-mpl 21931 |
| This theorem is referenced by: mhmcoaddmpl 22385 rhmcomulmpl 22386 rhmmpl 22387 mhmcoply1 22389 selvcllem4 42591 selvvvval 42595 selvadd 42598 selvmul 42599 |
| Copyright terms: Public domain | W3C validator |