Step | Hyp | Ref
| Expression |
1 | | mhmrcl1 17698 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd) |
2 | 1 | adantl 475 |
. . . 4
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝑆 ∈ Mnd) |
3 | | resmhm2.u |
. . . . . 6
⊢ 𝑈 = (𝑇 ↾s 𝑋) |
4 | 3 | submmnd 17714 |
. . . . 5
⊢ (𝑋 ∈ (SubMnd‘𝑇) → 𝑈 ∈ Mnd) |
5 | 4 | ad2antrr 717 |
. . . 4
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝑈 ∈ Mnd) |
6 | 2, 5 | jca 507 |
. . 3
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝑆 ∈ Mnd ∧ 𝑈 ∈ Mnd)) |
7 | | eqid 2825 |
. . . . . . . . 9
⊢
(Base‘𝑆) =
(Base‘𝑆) |
8 | | eqid 2825 |
. . . . . . . . 9
⊢
(Base‘𝑇) =
(Base‘𝑇) |
9 | 7, 8 | mhmf 17700 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
10 | 9 | adantl 475 |
. . . . . . 7
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
11 | 10 | ffnd 6283 |
. . . . . 6
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹 Fn (Base‘𝑆)) |
12 | | simplr 785 |
. . . . . 6
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → ran 𝐹 ⊆ 𝑋) |
13 | | df-f 6131 |
. . . . . 6
⊢ (𝐹:(Base‘𝑆)⟶𝑋 ↔ (𝐹 Fn (Base‘𝑆) ∧ ran 𝐹 ⊆ 𝑋)) |
14 | 11, 12, 13 | sylanbrc 578 |
. . . . 5
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹:(Base‘𝑆)⟶𝑋) |
15 | 3 | submbas 17715 |
. . . . . . 7
⊢ (𝑋 ∈ (SubMnd‘𝑇) → 𝑋 = (Base‘𝑈)) |
16 | 15 | ad2antrr 717 |
. . . . . 6
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝑋 = (Base‘𝑈)) |
17 | 16 | feq3d 6269 |
. . . . 5
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹:(Base‘𝑆)⟶𝑋 ↔ 𝐹:(Base‘𝑆)⟶(Base‘𝑈))) |
18 | 14, 17 | mpbid 224 |
. . . 4
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑈)) |
19 | | eqid 2825 |
. . . . . . . . 9
⊢
(+g‘𝑆) = (+g‘𝑆) |
20 | | eqid 2825 |
. . . . . . . . 9
⊢
(+g‘𝑇) = (+g‘𝑇) |
21 | 7, 19, 20 | mhmlin 17702 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
22 | 21 | 3expb 1153 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
23 | 22 | adantll 705 |
. . . . . 6
⊢ ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
24 | 3, 20 | ressplusg 16359 |
. . . . . . . 8
⊢ (𝑋 ∈ (SubMnd‘𝑇) →
(+g‘𝑇) =
(+g‘𝑈)) |
25 | 24 | ad3antrrr 721 |
. . . . . . 7
⊢ ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (+g‘𝑇) = (+g‘𝑈)) |
26 | 25 | oveqd 6927 |
. . . . . 6
⊢ ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
27 | 23, 26 | eqtrd 2861 |
. . . . 5
⊢ ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
28 | 27 | ralrimivva 3180 |
. . . 4
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
29 | | eqid 2825 |
. . . . . . 7
⊢
(0g‘𝑆) = (0g‘𝑆) |
30 | | eqid 2825 |
. . . . . . 7
⊢
(0g‘𝑇) = (0g‘𝑇) |
31 | 29, 30 | mhm0 17703 |
. . . . . 6
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
32 | 31 | adantl 475 |
. . . . 5
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
33 | 3, 30 | subm0 17716 |
. . . . . 6
⊢ (𝑋 ∈ (SubMnd‘𝑇) →
(0g‘𝑇) =
(0g‘𝑈)) |
34 | 33 | ad2antrr 717 |
. . . . 5
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (0g‘𝑇) = (0g‘𝑈)) |
35 | 32, 34 | eqtrd 2861 |
. . . 4
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(0g‘𝑆)) = (0g‘𝑈)) |
36 | 18, 28, 35 | 3jca 1162 |
. . 3
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑈))) |
37 | | eqid 2825 |
. . . 4
⊢
(Base‘𝑈) =
(Base‘𝑈) |
38 | | eqid 2825 |
. . . 4
⊢
(+g‘𝑈) = (+g‘𝑈) |
39 | | eqid 2825 |
. . . 4
⊢
(0g‘𝑈) = (0g‘𝑈) |
40 | 7, 37, 19, 38, 29, 39 | ismhm 17697 |
. . 3
⊢ (𝐹 ∈ (𝑆 MndHom 𝑈) ↔ ((𝑆 ∈ Mnd ∧ 𝑈 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑈)))) |
41 | 6, 36, 40 | sylanbrc 578 |
. 2
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑈)) |
42 | 3 | resmhm2 17720 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
43 | 42 | ancoms 452 |
. . 3
⊢ ((𝑋 ∈ (SubMnd‘𝑇) ∧ 𝐹 ∈ (𝑆 MndHom 𝑈)) → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
44 | 43 | adantlr 706 |
. 2
⊢ (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑈)) → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
45 | 41, 44 | impbida 835 |
1
⊢ ((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈))) |