MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmhm2b Structured version   Visualization version   GIF version

Theorem resmhm2b 18376
Description: Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypothesis
Ref Expression
resmhm2.u 𝑈 = (𝑇s 𝑋)
Assertion
Ref Expression
resmhm2b ((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈)))

Proof of Theorem resmhm2b
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl1 18348 . . . 4 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd)
21adantl 481 . . 3 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝑆 ∈ Mnd)
3 resmhm2.u . . . . 5 𝑈 = (𝑇s 𝑋)
43submmnd 18367 . . . 4 (𝑋 ∈ (SubMnd‘𝑇) → 𝑈 ∈ Mnd)
54ad2antrr 722 . . 3 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝑈 ∈ Mnd)
6 eqid 2738 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
7 eqid 2738 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
86, 7mhmf 18350 . . . . . . . 8 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
98adantl 481 . . . . . . 7 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
109ffnd 6585 . . . . . 6 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹 Fn (Base‘𝑆))
11 simplr 765 . . . . . 6 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → ran 𝐹𝑋)
12 df-f 6422 . . . . . 6 (𝐹:(Base‘𝑆)⟶𝑋 ↔ (𝐹 Fn (Base‘𝑆) ∧ ran 𝐹𝑋))
1310, 11, 12sylanbrc 582 . . . . 5 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹:(Base‘𝑆)⟶𝑋)
143submbas 18368 . . . . . . 7 (𝑋 ∈ (SubMnd‘𝑇) → 𝑋 = (Base‘𝑈))
1514ad2antrr 722 . . . . . 6 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝑋 = (Base‘𝑈))
1615feq3d 6571 . . . . 5 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹:(Base‘𝑆)⟶𝑋𝐹:(Base‘𝑆)⟶(Base‘𝑈)))
1713, 16mpbid 231 . . . 4 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑈))
18 eqid 2738 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
19 eqid 2738 . . . . . . . . 9 (+g𝑇) = (+g𝑇)
206, 18, 19mhmlin 18352 . . . . . . . 8 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
21203expb 1118 . . . . . . 7 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2221adantll 710 . . . . . 6 ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
233, 19ressplusg 16926 . . . . . . . 8 (𝑋 ∈ (SubMnd‘𝑇) → (+g𝑇) = (+g𝑈))
2423ad3antrrr 726 . . . . . . 7 ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (+g𝑇) = (+g𝑈))
2524oveqd 7272 . . . . . 6 ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
2622, 25eqtrd 2778 . . . . 5 ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
2726ralrimivva 3114 . . . 4 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
28 eqid 2738 . . . . . . 7 (0g𝑆) = (0g𝑆)
29 eqid 2738 . . . . . . 7 (0g𝑇) = (0g𝑇)
3028, 29mhm0 18353 . . . . . 6 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
3130adantl 481 . . . . 5 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(0g𝑆)) = (0g𝑇))
323, 29subm0 18369 . . . . . 6 (𝑋 ∈ (SubMnd‘𝑇) → (0g𝑇) = (0g𝑈))
3332ad2antrr 722 . . . . 5 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (0g𝑇) = (0g𝑈))
3431, 33eqtrd 2778 . . . 4 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(0g𝑆)) = (0g𝑈))
3517, 27, 343jca 1126 . . 3 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑈)))
36 eqid 2738 . . . 4 (Base‘𝑈) = (Base‘𝑈)
37 eqid 2738 . . . 4 (+g𝑈) = (+g𝑈)
38 eqid 2738 . . . 4 (0g𝑈) = (0g𝑈)
396, 36, 18, 37, 28, 38ismhm 18347 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑈) ↔ ((𝑆 ∈ Mnd ∧ 𝑈 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑈))))
402, 5, 35, 39syl21anbrc 1342 . 2 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑈))
413resmhm2 18375 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑇))
4241ancoms 458 . . 3 ((𝑋 ∈ (SubMnd‘𝑇) ∧ 𝐹 ∈ (𝑆 MndHom 𝑈)) → 𝐹 ∈ (𝑆 MndHom 𝑇))
4342adantlr 711 . 2 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑈)) → 𝐹 ∈ (𝑆 MndHom 𝑇))
4440, 43impbida 797 1 ((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wss 3883  ran crn 5581   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  +gcplusg 16888  0gc0g 17067  Mndcmnd 18300   MndHom cmhm 18343  SubMndcsubmnd 18344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346
This theorem is referenced by:  resghm2b  18767  m2cpmmhm  21802  dchrghm  26309  lgseisenlem4  26431
  Copyright terms: Public domain W3C validator