MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmhm2b Structured version   Visualization version   GIF version

Theorem resmhm2b 18749
Description: Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypothesis
Ref Expression
resmhm2.u 𝑈 = (𝑇s 𝑋)
Assertion
Ref Expression
resmhm2b ((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈)))

Proof of Theorem resmhm2b
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl1 18714 . . . 4 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd)
21adantl 481 . . 3 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝑆 ∈ Mnd)
3 resmhm2.u . . . . 5 𝑈 = (𝑇s 𝑋)
43submmnd 18740 . . . 4 (𝑋 ∈ (SubMnd‘𝑇) → 𝑈 ∈ Mnd)
54ad2antrr 726 . . 3 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝑈 ∈ Mnd)
6 eqid 2729 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
7 eqid 2729 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
86, 7mhmf 18716 . . . . . . . 8 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
98adantl 481 . . . . . . 7 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
109ffnd 6689 . . . . . 6 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹 Fn (Base‘𝑆))
11 simplr 768 . . . . . 6 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → ran 𝐹𝑋)
12 df-f 6515 . . . . . 6 (𝐹:(Base‘𝑆)⟶𝑋 ↔ (𝐹 Fn (Base‘𝑆) ∧ ran 𝐹𝑋))
1310, 11, 12sylanbrc 583 . . . . 5 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹:(Base‘𝑆)⟶𝑋)
143submbas 18741 . . . . . . 7 (𝑋 ∈ (SubMnd‘𝑇) → 𝑋 = (Base‘𝑈))
1514ad2antrr 726 . . . . . 6 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝑋 = (Base‘𝑈))
1615feq3d 6673 . . . . 5 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹:(Base‘𝑆)⟶𝑋𝐹:(Base‘𝑆)⟶(Base‘𝑈)))
1713, 16mpbid 232 . . . 4 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑈))
18 eqid 2729 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
19 eqid 2729 . . . . . . . . 9 (+g𝑇) = (+g𝑇)
206, 18, 19mhmlin 18720 . . . . . . . 8 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
21203expb 1120 . . . . . . 7 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2221adantll 714 . . . . . 6 ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
233, 19ressplusg 17254 . . . . . . . 8 (𝑋 ∈ (SubMnd‘𝑇) → (+g𝑇) = (+g𝑈))
2423ad3antrrr 730 . . . . . . 7 ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (+g𝑇) = (+g𝑈))
2524oveqd 7404 . . . . . 6 ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
2622, 25eqtrd 2764 . . . . 5 ((((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
2726ralrimivva 3180 . . . 4 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
28 eqid 2729 . . . . . . 7 (0g𝑆) = (0g𝑆)
29 eqid 2729 . . . . . . 7 (0g𝑇) = (0g𝑇)
3028, 29mhm0 18721 . . . . . 6 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
3130adantl 481 . . . . 5 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(0g𝑆)) = (0g𝑇))
323, 29subm0 18742 . . . . . 6 (𝑋 ∈ (SubMnd‘𝑇) → (0g𝑇) = (0g𝑈))
3332ad2antrr 726 . . . . 5 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (0g𝑇) = (0g𝑈))
3431, 33eqtrd 2764 . . . 4 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(0g𝑆)) = (0g𝑈))
3517, 27, 343jca 1128 . . 3 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → (𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑈)))
36 eqid 2729 . . . 4 (Base‘𝑈) = (Base‘𝑈)
37 eqid 2729 . . . 4 (+g𝑈) = (+g𝑈)
38 eqid 2729 . . . 4 (0g𝑈) = (0g𝑈)
396, 36, 18, 37, 28, 38ismhm 18712 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑈) ↔ ((𝑆 ∈ Mnd ∧ 𝑈 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑈))))
402, 5, 35, 39syl21anbrc 1345 . 2 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑈))
413resmhm2 18748 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑇))
4241ancoms 458 . . 3 ((𝑋 ∈ (SubMnd‘𝑇) ∧ 𝐹 ∈ (𝑆 MndHom 𝑈)) → 𝐹 ∈ (𝑆 MndHom 𝑇))
4342adantlr 715 . 2 (((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MndHom 𝑈)) → 𝐹 ∈ (𝑆 MndHom 𝑇))
4440, 43impbida 800 1 ((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3914  ran crn 5639   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  +gcplusg 17220  0gc0g 17402  Mndcmnd 18661   MndHom cmhm 18708  SubMndcsubmnd 18709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711
This theorem is referenced by:  resghm2b  19166  resrhm2b  20511  m2cpmmhm  22632  dchrghm  27167  lgseisenlem4  27289
  Copyright terms: Public domain W3C validator