Proof of Theorem cos01gt0
Step | Hyp | Ref
| Expression |
1 | | 0xr 10953 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ* |
2 | | 1re 10906 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ |
3 | | elioc2 13071 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1))) |
4 | 1, 2, 3 | mp2an 688 |
. . . . . . . . 9
⊢ (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 ≤ 1)) |
5 | 4 | simp1bi 1143 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) → 𝐴 ∈
ℝ) |
6 | 5 | resqcld 13893 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈
ℝ) |
7 | 6 | recnd 10934 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈
ℂ) |
8 | | 2cn 11978 |
. . . . . . 7
⊢ 2 ∈
ℂ |
9 | | 3cn 11984 |
. . . . . . . 8
⊢ 3 ∈
ℂ |
10 | | 3ne0 12009 |
. . . . . . . 8
⊢ 3 ≠
0 |
11 | 9, 10 | pm3.2i 470 |
. . . . . . 7
⊢ (3 ∈
ℂ ∧ 3 ≠ 0) |
12 | | div12 11585 |
. . . . . . 7
⊢ ((2
∈ ℂ ∧ (𝐴↑2) ∈ ℂ ∧ (3 ∈
ℂ ∧ 3 ≠ 0)) → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3))) |
13 | 8, 11, 12 | mp3an13 1450 |
. . . . . 6
⊢ ((𝐴↑2) ∈ ℂ →
(2 · ((𝐴↑2) /
3)) = ((𝐴↑2) ·
(2 / 3))) |
14 | 7, 13 | syl 17 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → (2
· ((𝐴↑2) / 3))
= ((𝐴↑2) · (2 /
3))) |
15 | | 2z 12282 |
. . . . . . . . . 10
⊢ 2 ∈
ℤ |
16 | | expgt0 13744 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 2 ∈
ℤ ∧ 0 < 𝐴)
→ 0 < (𝐴↑2)) |
17 | 15, 16 | mp3an2 1447 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 < (𝐴↑2)) |
18 | 17 | 3adant3 1130 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 ≤ 1) → 0 < (𝐴↑2)) |
19 | 4, 18 | sylbi 216 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 0 <
(𝐴↑2)) |
20 | | 2lt3 12075 |
. . . . . . . . . 10
⊢ 2 <
3 |
21 | | 2re 11977 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
22 | | 3re 11983 |
. . . . . . . . . . 11
⊢ 3 ∈
ℝ |
23 | | 3pos 12008 |
. . . . . . . . . . 11
⊢ 0 <
3 |
24 | 21, 22, 22, 23 | ltdiv1ii 11834 |
. . . . . . . . . 10
⊢ (2 < 3
↔ (2 / 3) < (3 / 3)) |
25 | 20, 24 | mpbi 229 |
. . . . . . . . 9
⊢ (2 / 3)
< (3 / 3) |
26 | 9, 10 | dividi 11638 |
. . . . . . . . 9
⊢ (3 / 3) =
1 |
27 | 25, 26 | breqtri 5095 |
. . . . . . . 8
⊢ (2 / 3)
< 1 |
28 | 21, 22, 10 | redivcli 11672 |
. . . . . . . . 9
⊢ (2 / 3)
∈ ℝ |
29 | | ltmul2 11756 |
. . . . . . . . 9
⊢ (((2 / 3)
∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴↑2) ∈ ℝ ∧ 0 < (𝐴↑2))) → ((2 / 3) <
1 ↔ ((𝐴↑2)
· (2 / 3)) < ((𝐴↑2) · 1))) |
30 | 28, 2, 29 | mp3an12 1449 |
. . . . . . . 8
⊢ (((𝐴↑2) ∈ ℝ ∧ 0
< (𝐴↑2)) → ((2
/ 3) < 1 ↔ ((𝐴↑2) · (2 / 3)) < ((𝐴↑2) ·
1))) |
31 | 27, 30 | mpbii 232 |
. . . . . . 7
⊢ (((𝐴↑2) ∈ ℝ ∧ 0
< (𝐴↑2)) →
((𝐴↑2) · (2 /
3)) < ((𝐴↑2)
· 1)) |
32 | 6, 19, 31 | syl2anc 583 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (2 / 3)) <
((𝐴↑2) ·
1)) |
33 | 7 | mulid1d 10923 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑2) · 1) = (𝐴↑2)) |
34 | 32, 33 | breqtrd 5096 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (2 / 3)) <
(𝐴↑2)) |
35 | 14, 34 | eqbrtrd 5092 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) → (2
· ((𝐴↑2) / 3))
< (𝐴↑2)) |
36 | | 0re 10908 |
. . . . . . . . 9
⊢ 0 ∈
ℝ |
37 | | ltle 10994 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) |
38 | 36, 37 | mpan 686 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → (0 <
𝐴 → 0 ≤ 𝐴)) |
39 | 38 | imdistani 568 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (𝐴 ∈ ℝ ∧ 0 ≤
𝐴)) |
40 | | le2sq2 13782 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (1 ∈ ℝ
∧ 𝐴 ≤ 1)) →
(𝐴↑2) ≤
(1↑2)) |
41 | 2, 40 | mpanr1 699 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝐴 ≤ 1) → (𝐴↑2) ≤ (1↑2)) |
42 | 39, 41 | stoic3 1780 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 ≤ 1) → (𝐴↑2) ≤ (1↑2)) |
43 | 4, 42 | sylbi 216 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑2) ≤
(1↑2)) |
44 | | sq1 13840 |
. . . . 5
⊢
(1↑2) = 1 |
45 | 43, 44 | breqtrdi 5111 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑2) ≤
1) |
46 | | redivcl 11624 |
. . . . . . . 8
⊢ (((𝐴↑2) ∈ ℝ ∧ 3
∈ ℝ ∧ 3 ≠ 0) → ((𝐴↑2) / 3) ∈
ℝ) |
47 | 22, 10, 46 | mp3an23 1451 |
. . . . . . 7
⊢ ((𝐴↑2) ∈ ℝ →
((𝐴↑2) / 3) ∈
ℝ) |
48 | 6, 47 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 3) ∈
ℝ) |
49 | | remulcl 10887 |
. . . . . 6
⊢ ((2
∈ ℝ ∧ ((𝐴↑2) / 3) ∈ ℝ) → (2
· ((𝐴↑2) / 3))
∈ ℝ) |
50 | 21, 48, 49 | sylancr 586 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → (2
· ((𝐴↑2) / 3))
∈ ℝ) |
51 | | ltletr 10997 |
. . . . . 6
⊢ (((2
· ((𝐴↑2) / 3))
∈ ℝ ∧ (𝐴↑2) ∈ ℝ ∧ 1 ∈
ℝ) → (((2 · ((𝐴↑2) / 3)) < (𝐴↑2) ∧ (𝐴↑2) ≤ 1) → (2 · ((𝐴↑2) / 3)) <
1)) |
52 | 2, 51 | mp3an3 1448 |
. . . . 5
⊢ (((2
· ((𝐴↑2) / 3))
∈ ℝ ∧ (𝐴↑2) ∈ ℝ) → (((2
· ((𝐴↑2) / 3))
< (𝐴↑2) ∧
(𝐴↑2) ≤ 1) →
(2 · ((𝐴↑2) /
3)) < 1)) |
53 | 50, 6, 52 | syl2anc 583 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) → (((2
· ((𝐴↑2) / 3))
< (𝐴↑2) ∧
(𝐴↑2) ≤ 1) →
(2 · ((𝐴↑2) /
3)) < 1)) |
54 | 35, 45, 53 | mp2and 695 |
. . 3
⊢ (𝐴 ∈ (0(,]1) → (2
· ((𝐴↑2) / 3))
< 1) |
55 | | posdif 11398 |
. . . 4
⊢ (((2
· ((𝐴↑2) / 3))
∈ ℝ ∧ 1 ∈ ℝ) → ((2 · ((𝐴↑2) / 3)) < 1 ↔ 0 < (1
− (2 · ((𝐴↑2) / 3))))) |
56 | 50, 2, 55 | sylancl 585 |
. . 3
⊢ (𝐴 ∈ (0(,]1) → ((2
· ((𝐴↑2) / 3))
< 1 ↔ 0 < (1 − (2 · ((𝐴↑2) / 3))))) |
57 | 54, 56 | mpbid 231 |
. 2
⊢ (𝐴 ∈ (0(,]1) → 0 < (1
− (2 · ((𝐴↑2) / 3)))) |
58 | | cos01bnd 15823 |
. . 3
⊢ (𝐴 ∈ (0(,]1) → ((1
− (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) /
3)))) |
59 | 58 | simpld 494 |
. 2
⊢ (𝐴 ∈ (0(,]1) → (1
− (2 · ((𝐴↑2) / 3))) < (cos‘𝐴)) |
60 | | resubcl 11215 |
. . . 4
⊢ ((1
∈ ℝ ∧ (2 · ((𝐴↑2) / 3)) ∈ ℝ) → (1
− (2 · ((𝐴↑2) / 3))) ∈
ℝ) |
61 | 2, 50, 60 | sylancr 586 |
. . 3
⊢ (𝐴 ∈ (0(,]1) → (1
− (2 · ((𝐴↑2) / 3))) ∈
ℝ) |
62 | 5 | recoscld 15781 |
. . 3
⊢ (𝐴 ∈ (0(,]1) →
(cos‘𝐴) ∈
ℝ) |
63 | | lttr 10982 |
. . 3
⊢ ((0
∈ ℝ ∧ (1 − (2 · ((𝐴↑2) / 3))) ∈ ℝ ∧
(cos‘𝐴) ∈
ℝ) → ((0 < (1 − (2 · ((𝐴↑2) / 3))) ∧ (1 − (2 ·
((𝐴↑2) / 3))) <
(cos‘𝐴)) → 0
< (cos‘𝐴))) |
64 | 36, 61, 62, 63 | mp3an2i 1464 |
. 2
⊢ (𝐴 ∈ (0(,]1) → ((0 <
(1 − (2 · ((𝐴↑2) / 3))) ∧ (1 − (2 ·
((𝐴↑2) / 3))) <
(cos‘𝐴)) → 0
< (cos‘𝐴))) |
65 | 57, 59, 64 | mp2and 695 |
1
⊢ (𝐴 ∈ (0(,]1) → 0 <
(cos‘𝐴)) |