MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cos01gt0 Structured version   Visualization version   GIF version

Theorem cos01gt0 16100
Description: The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
cos01gt0 (𝐴 ∈ (0(,]1) → 0 < (cos‘𝐴))

Proof of Theorem cos01gt0
StepHypRef Expression
1 0xr 11159 . . . . . . . . . 10 0 ∈ ℝ*
2 1re 11112 . . . . . . . . . 10 1 ∈ ℝ
3 elioc2 13309 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1)))
41, 2, 3mp2an 692 . . . . . . . . 9 (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1))
54simp1bi 1145 . . . . . . . 8 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℝ)
65resqcld 14032 . . . . . . 7 (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈ ℝ)
76recnd 11140 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈ ℂ)
8 2cn 12200 . . . . . . 7 2 ∈ ℂ
9 3cn 12206 . . . . . . . 8 3 ∈ ℂ
10 3ne0 12231 . . . . . . . 8 3 ≠ 0
119, 10pm3.2i 470 . . . . . . 7 (3 ∈ ℂ ∧ 3 ≠ 0)
12 div12 11798 . . . . . . 7 ((2 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
138, 11, 12mp3an13 1454 . . . . . 6 ((𝐴↑2) ∈ ℂ → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
147, 13syl 17 . . . . 5 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
15 2z 12504 . . . . . . . . . 10 2 ∈ ℤ
16 expgt0 14002 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 2 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴↑2))
1715, 16mp3an2 1451 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (𝐴↑2))
18173adant3 1132 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1) → 0 < (𝐴↑2))
194, 18sylbi 217 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 < (𝐴↑2))
20 2lt3 12292 . . . . . . . . . 10 2 < 3
21 2re 12199 . . . . . . . . . . 11 2 ∈ ℝ
22 3re 12205 . . . . . . . . . . 11 3 ∈ ℝ
23 3pos 12230 . . . . . . . . . . 11 0 < 3
2421, 22, 22, 23ltdiv1ii 12051 . . . . . . . . . 10 (2 < 3 ↔ (2 / 3) < (3 / 3))
2520, 24mpbi 230 . . . . . . . . 9 (2 / 3) < (3 / 3)
269, 10dividi 11854 . . . . . . . . 9 (3 / 3) = 1
2725, 26breqtri 5116 . . . . . . . 8 (2 / 3) < 1
2821, 22, 10redivcli 11888 . . . . . . . . 9 (2 / 3) ∈ ℝ
29 ltmul2 11972 . . . . . . . . 9 (((2 / 3) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴↑2) ∈ ℝ ∧ 0 < (𝐴↑2))) → ((2 / 3) < 1 ↔ ((𝐴↑2) · (2 / 3)) < ((𝐴↑2) · 1)))
3028, 2, 29mp3an12 1453 . . . . . . . 8 (((𝐴↑2) ∈ ℝ ∧ 0 < (𝐴↑2)) → ((2 / 3) < 1 ↔ ((𝐴↑2) · (2 / 3)) < ((𝐴↑2) · 1)))
3127, 30mpbii 233 . . . . . . 7 (((𝐴↑2) ∈ ℝ ∧ 0 < (𝐴↑2)) → ((𝐴↑2) · (2 / 3)) < ((𝐴↑2) · 1))
326, 19, 31syl2anc 584 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (2 / 3)) < ((𝐴↑2) · 1))
337mulridd 11129 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · 1) = (𝐴↑2))
3432, 33breqtrd 5117 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (2 / 3)) < (𝐴↑2))
3514, 34eqbrtrd 5113 . . . 4 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) < (𝐴↑2))
36 0re 11114 . . . . . . . . 9 0 ∈ ℝ
37 ltle 11201 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
3836, 37mpan 690 . . . . . . . 8 (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴))
3938imdistani 568 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
40 le2sq2 14042 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (1 ∈ ℝ ∧ 𝐴 ≤ 1)) → (𝐴↑2) ≤ (1↑2))
412, 40mpanr1 703 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ 1) → (𝐴↑2) ≤ (1↑2))
4239, 41stoic3 1777 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1) → (𝐴↑2) ≤ (1↑2))
434, 42sylbi 217 . . . . 5 (𝐴 ∈ (0(,]1) → (𝐴↑2) ≤ (1↑2))
44 sq1 14102 . . . . 5 (1↑2) = 1
4543, 44breqtrdi 5132 . . . 4 (𝐴 ∈ (0(,]1) → (𝐴↑2) ≤ 1)
46 redivcl 11840 . . . . . . . 8 (((𝐴↑2) ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0) → ((𝐴↑2) / 3) ∈ ℝ)
4722, 10, 46mp3an23 1455 . . . . . . 7 ((𝐴↑2) ∈ ℝ → ((𝐴↑2) / 3) ∈ ℝ)
486, 47syl 17 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 3) ∈ ℝ)
49 remulcl 11091 . . . . . 6 ((2 ∈ ℝ ∧ ((𝐴↑2) / 3) ∈ ℝ) → (2 · ((𝐴↑2) / 3)) ∈ ℝ)
5021, 48, 49sylancr 587 . . . . 5 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) ∈ ℝ)
51 ltletr 11205 . . . . . 6 (((2 · ((𝐴↑2) / 3)) ∈ ℝ ∧ (𝐴↑2) ∈ ℝ ∧ 1 ∈ ℝ) → (((2 · ((𝐴↑2) / 3)) < (𝐴↑2) ∧ (𝐴↑2) ≤ 1) → (2 · ((𝐴↑2) / 3)) < 1))
522, 51mp3an3 1452 . . . . 5 (((2 · ((𝐴↑2) / 3)) ∈ ℝ ∧ (𝐴↑2) ∈ ℝ) → (((2 · ((𝐴↑2) / 3)) < (𝐴↑2) ∧ (𝐴↑2) ≤ 1) → (2 · ((𝐴↑2) / 3)) < 1))
5350, 6, 52syl2anc 584 . . . 4 (𝐴 ∈ (0(,]1) → (((2 · ((𝐴↑2) / 3)) < (𝐴↑2) ∧ (𝐴↑2) ≤ 1) → (2 · ((𝐴↑2) / 3)) < 1))
5435, 45, 53mp2and 699 . . 3 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) < 1)
55 posdif 11610 . . . 4 (((2 · ((𝐴↑2) / 3)) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 · ((𝐴↑2) / 3)) < 1 ↔ 0 < (1 − (2 · ((𝐴↑2) / 3)))))
5650, 2, 55sylancl 586 . . 3 (𝐴 ∈ (0(,]1) → ((2 · ((𝐴↑2) / 3)) < 1 ↔ 0 < (1 − (2 · ((𝐴↑2) / 3)))))
5754, 56mpbid 232 . 2 (𝐴 ∈ (0(,]1) → 0 < (1 − (2 · ((𝐴↑2) / 3))))
58 cos01bnd 16095 . . 3 (𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3))))
5958simpld 494 . 2 (𝐴 ∈ (0(,]1) → (1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴))
60 resubcl 11425 . . . 4 ((1 ∈ ℝ ∧ (2 · ((𝐴↑2) / 3)) ∈ ℝ) → (1 − (2 · ((𝐴↑2) / 3))) ∈ ℝ)
612, 50, 60sylancr 587 . . 3 (𝐴 ∈ (0(,]1) → (1 − (2 · ((𝐴↑2) / 3))) ∈ ℝ)
625recoscld 16053 . . 3 (𝐴 ∈ (0(,]1) → (cos‘𝐴) ∈ ℝ)
63 lttr 11189 . . 3 ((0 ∈ ℝ ∧ (1 − (2 · ((𝐴↑2) / 3))) ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → ((0 < (1 − (2 · ((𝐴↑2) / 3))) ∧ (1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴)) → 0 < (cos‘𝐴)))
6436, 61, 62, 63mp3an2i 1468 . 2 (𝐴 ∈ (0(,]1) → ((0 < (1 − (2 · ((𝐴↑2) / 3))) ∧ (1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴)) → 0 < (cos‘𝐴)))
6557, 59, 64mp2and 699 1 (𝐴 ∈ (0(,]1) → 0 < (cos‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   · cmul 11011  *cxr 11145   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  2c2 12180  3c3 12181  cz 12468  (,]cioc 13246  cexp 13968  cosccos 15971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ioc 13250  df-ico 13251  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-fac 14181  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-cos 15977
This theorem is referenced by:  sin02gt0  16101  sincos1sgn  16102  tangtx  26442
  Copyright terms: Public domain W3C validator