MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cos01gt0 Structured version   Visualization version   GIF version

Theorem cos01gt0 16073
Description: The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
cos01gt0 (𝐴 ∈ (0(,]1) → 0 < (cos‘𝐴))

Proof of Theorem cos01gt0
StepHypRef Expression
1 0xr 11202 . . . . . . . . . 10 0 ∈ ℝ*
2 1re 11155 . . . . . . . . . 10 1 ∈ ℝ
3 elioc2 13327 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1)))
41, 2, 3mp2an 690 . . . . . . . . 9 (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1))
54simp1bi 1145 . . . . . . . 8 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℝ)
65resqcld 14030 . . . . . . 7 (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈ ℝ)
76recnd 11183 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈ ℂ)
8 2cn 12228 . . . . . . 7 2 ∈ ℂ
9 3cn 12234 . . . . . . . 8 3 ∈ ℂ
10 3ne0 12259 . . . . . . . 8 3 ≠ 0
119, 10pm3.2i 471 . . . . . . 7 (3 ∈ ℂ ∧ 3 ≠ 0)
12 div12 11835 . . . . . . 7 ((2 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
138, 11, 12mp3an13 1452 . . . . . 6 ((𝐴↑2) ∈ ℂ → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
147, 13syl 17 . . . . 5 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
15 2z 12535 . . . . . . . . . 10 2 ∈ ℤ
16 expgt0 14001 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 2 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴↑2))
1715, 16mp3an2 1449 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (𝐴↑2))
18173adant3 1132 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1) → 0 < (𝐴↑2))
194, 18sylbi 216 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 < (𝐴↑2))
20 2lt3 12325 . . . . . . . . . 10 2 < 3
21 2re 12227 . . . . . . . . . . 11 2 ∈ ℝ
22 3re 12233 . . . . . . . . . . 11 3 ∈ ℝ
23 3pos 12258 . . . . . . . . . . 11 0 < 3
2421, 22, 22, 23ltdiv1ii 12084 . . . . . . . . . 10 (2 < 3 ↔ (2 / 3) < (3 / 3))
2520, 24mpbi 229 . . . . . . . . 9 (2 / 3) < (3 / 3)
269, 10dividi 11888 . . . . . . . . 9 (3 / 3) = 1
2725, 26breqtri 5130 . . . . . . . 8 (2 / 3) < 1
2821, 22, 10redivcli 11922 . . . . . . . . 9 (2 / 3) ∈ ℝ
29 ltmul2 12006 . . . . . . . . 9 (((2 / 3) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴↑2) ∈ ℝ ∧ 0 < (𝐴↑2))) → ((2 / 3) < 1 ↔ ((𝐴↑2) · (2 / 3)) < ((𝐴↑2) · 1)))
3028, 2, 29mp3an12 1451 . . . . . . . 8 (((𝐴↑2) ∈ ℝ ∧ 0 < (𝐴↑2)) → ((2 / 3) < 1 ↔ ((𝐴↑2) · (2 / 3)) < ((𝐴↑2) · 1)))
3127, 30mpbii 232 . . . . . . 7 (((𝐴↑2) ∈ ℝ ∧ 0 < (𝐴↑2)) → ((𝐴↑2) · (2 / 3)) < ((𝐴↑2) · 1))
326, 19, 31syl2anc 584 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (2 / 3)) < ((𝐴↑2) · 1))
337mulid1d 11172 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · 1) = (𝐴↑2))
3432, 33breqtrd 5131 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (2 / 3)) < (𝐴↑2))
3514, 34eqbrtrd 5127 . . . 4 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) < (𝐴↑2))
36 0re 11157 . . . . . . . . 9 0 ∈ ℝ
37 ltle 11243 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
3836, 37mpan 688 . . . . . . . 8 (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴))
3938imdistani 569 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
40 le2sq2 14040 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (1 ∈ ℝ ∧ 𝐴 ≤ 1)) → (𝐴↑2) ≤ (1↑2))
412, 40mpanr1 701 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ 1) → (𝐴↑2) ≤ (1↑2))
4239, 41stoic3 1778 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1) → (𝐴↑2) ≤ (1↑2))
434, 42sylbi 216 . . . . 5 (𝐴 ∈ (0(,]1) → (𝐴↑2) ≤ (1↑2))
44 sq1 14099 . . . . 5 (1↑2) = 1
4543, 44breqtrdi 5146 . . . 4 (𝐴 ∈ (0(,]1) → (𝐴↑2) ≤ 1)
46 redivcl 11874 . . . . . . . 8 (((𝐴↑2) ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0) → ((𝐴↑2) / 3) ∈ ℝ)
4722, 10, 46mp3an23 1453 . . . . . . 7 ((𝐴↑2) ∈ ℝ → ((𝐴↑2) / 3) ∈ ℝ)
486, 47syl 17 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 3) ∈ ℝ)
49 remulcl 11136 . . . . . 6 ((2 ∈ ℝ ∧ ((𝐴↑2) / 3) ∈ ℝ) → (2 · ((𝐴↑2) / 3)) ∈ ℝ)
5021, 48, 49sylancr 587 . . . . 5 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) ∈ ℝ)
51 ltletr 11247 . . . . . 6 (((2 · ((𝐴↑2) / 3)) ∈ ℝ ∧ (𝐴↑2) ∈ ℝ ∧ 1 ∈ ℝ) → (((2 · ((𝐴↑2) / 3)) < (𝐴↑2) ∧ (𝐴↑2) ≤ 1) → (2 · ((𝐴↑2) / 3)) < 1))
522, 51mp3an3 1450 . . . . 5 (((2 · ((𝐴↑2) / 3)) ∈ ℝ ∧ (𝐴↑2) ∈ ℝ) → (((2 · ((𝐴↑2) / 3)) < (𝐴↑2) ∧ (𝐴↑2) ≤ 1) → (2 · ((𝐴↑2) / 3)) < 1))
5350, 6, 52syl2anc 584 . . . 4 (𝐴 ∈ (0(,]1) → (((2 · ((𝐴↑2) / 3)) < (𝐴↑2) ∧ (𝐴↑2) ≤ 1) → (2 · ((𝐴↑2) / 3)) < 1))
5435, 45, 53mp2and 697 . . 3 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) < 1)
55 posdif 11648 . . . 4 (((2 · ((𝐴↑2) / 3)) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 · ((𝐴↑2) / 3)) < 1 ↔ 0 < (1 − (2 · ((𝐴↑2) / 3)))))
5650, 2, 55sylancl 586 . . 3 (𝐴 ∈ (0(,]1) → ((2 · ((𝐴↑2) / 3)) < 1 ↔ 0 < (1 − (2 · ((𝐴↑2) / 3)))))
5754, 56mpbid 231 . 2 (𝐴 ∈ (0(,]1) → 0 < (1 − (2 · ((𝐴↑2) / 3))))
58 cos01bnd 16068 . . 3 (𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3))))
5958simpld 495 . 2 (𝐴 ∈ (0(,]1) → (1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴))
60 resubcl 11465 . . . 4 ((1 ∈ ℝ ∧ (2 · ((𝐴↑2) / 3)) ∈ ℝ) → (1 − (2 · ((𝐴↑2) / 3))) ∈ ℝ)
612, 50, 60sylancr 587 . . 3 (𝐴 ∈ (0(,]1) → (1 − (2 · ((𝐴↑2) / 3))) ∈ ℝ)
625recoscld 16026 . . 3 (𝐴 ∈ (0(,]1) → (cos‘𝐴) ∈ ℝ)
63 lttr 11231 . . 3 ((0 ∈ ℝ ∧ (1 − (2 · ((𝐴↑2) / 3))) ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → ((0 < (1 − (2 · ((𝐴↑2) / 3))) ∧ (1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴)) → 0 < (cos‘𝐴)))
6436, 61, 62, 63mp3an2i 1466 . 2 (𝐴 ∈ (0(,]1) → ((0 < (1 − (2 · ((𝐴↑2) / 3))) ∧ (1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴)) → 0 < (cos‘𝐴)))
6557, 59, 64mp2and 697 1 (𝐴 ∈ (0(,]1) → 0 < (cos‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   · cmul 11056  *cxr 11188   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  2c2 12208  3c3 12209  cz 12499  (,]cioc 13265  cexp 13967  cosccos 15947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ioc 13269  df-ico 13270  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-fac 14174  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-cos 15953
This theorem is referenced by:  sin02gt0  16074  sincos1sgn  16075  tangtx  25862
  Copyright terms: Public domain W3C validator