MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cos01gt0 Structured version   Visualization version   GIF version

Theorem cos01gt0 16138
Description: The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
cos01gt0 (๐ด โˆˆ (0(,]1) โ†’ 0 < (cosโ€˜๐ด))

Proof of Theorem cos01gt0
StepHypRef Expression
1 0xr 11265 . . . . . . . . . 10 0 โˆˆ โ„*
2 1re 11218 . . . . . . . . . 10 1 โˆˆ โ„
3 elioc2 13391 . . . . . . . . . 10 ((0 โˆˆ โ„* โˆง 1 โˆˆ โ„) โ†’ (๐ด โˆˆ (0(,]1) โ†” (๐ด โˆˆ โ„ โˆง 0 < ๐ด โˆง ๐ด โ‰ค 1)))
41, 2, 3mp2an 688 . . . . . . . . 9 (๐ด โˆˆ (0(,]1) โ†” (๐ด โˆˆ โ„ โˆง 0 < ๐ด โˆง ๐ด โ‰ค 1))
54simp1bi 1143 . . . . . . . 8 (๐ด โˆˆ (0(,]1) โ†’ ๐ด โˆˆ โ„)
65resqcld 14094 . . . . . . 7 (๐ด โˆˆ (0(,]1) โ†’ (๐ดโ†‘2) โˆˆ โ„)
76recnd 11246 . . . . . 6 (๐ด โˆˆ (0(,]1) โ†’ (๐ดโ†‘2) โˆˆ โ„‚)
8 2cn 12291 . . . . . . 7 2 โˆˆ โ„‚
9 3cn 12297 . . . . . . . 8 3 โˆˆ โ„‚
10 3ne0 12322 . . . . . . . 8 3 โ‰  0
119, 10pm3.2i 469 . . . . . . 7 (3 โˆˆ โ„‚ โˆง 3 โ‰  0)
12 div12 11898 . . . . . . 7 ((2 โˆˆ โ„‚ โˆง (๐ดโ†‘2) โˆˆ โ„‚ โˆง (3 โˆˆ โ„‚ โˆง 3 โ‰  0)) โ†’ (2 ยท ((๐ดโ†‘2) / 3)) = ((๐ดโ†‘2) ยท (2 / 3)))
138, 11, 12mp3an13 1450 . . . . . 6 ((๐ดโ†‘2) โˆˆ โ„‚ โ†’ (2 ยท ((๐ดโ†‘2) / 3)) = ((๐ดโ†‘2) ยท (2 / 3)))
147, 13syl 17 . . . . 5 (๐ด โˆˆ (0(,]1) โ†’ (2 ยท ((๐ดโ†‘2) / 3)) = ((๐ดโ†‘2) ยท (2 / 3)))
15 2z 12598 . . . . . . . . . 10 2 โˆˆ โ„ค
16 expgt0 14065 . . . . . . . . . 10 ((๐ด โˆˆ โ„ โˆง 2 โˆˆ โ„ค โˆง 0 < ๐ด) โ†’ 0 < (๐ดโ†‘2))
1715, 16mp3an2 1447 . . . . . . . . 9 ((๐ด โˆˆ โ„ โˆง 0 < ๐ด) โ†’ 0 < (๐ดโ†‘2))
18173adant3 1130 . . . . . . . 8 ((๐ด โˆˆ โ„ โˆง 0 < ๐ด โˆง ๐ด โ‰ค 1) โ†’ 0 < (๐ดโ†‘2))
194, 18sylbi 216 . . . . . . 7 (๐ด โˆˆ (0(,]1) โ†’ 0 < (๐ดโ†‘2))
20 2lt3 12388 . . . . . . . . . 10 2 < 3
21 2re 12290 . . . . . . . . . . 11 2 โˆˆ โ„
22 3re 12296 . . . . . . . . . . 11 3 โˆˆ โ„
23 3pos 12321 . . . . . . . . . . 11 0 < 3
2421, 22, 22, 23ltdiv1ii 12147 . . . . . . . . . 10 (2 < 3 โ†” (2 / 3) < (3 / 3))
2520, 24mpbi 229 . . . . . . . . 9 (2 / 3) < (3 / 3)
269, 10dividi 11951 . . . . . . . . 9 (3 / 3) = 1
2725, 26breqtri 5172 . . . . . . . 8 (2 / 3) < 1
2821, 22, 10redivcli 11985 . . . . . . . . 9 (2 / 3) โˆˆ โ„
29 ltmul2 12069 . . . . . . . . 9 (((2 / 3) โˆˆ โ„ โˆง 1 โˆˆ โ„ โˆง ((๐ดโ†‘2) โˆˆ โ„ โˆง 0 < (๐ดโ†‘2))) โ†’ ((2 / 3) < 1 โ†” ((๐ดโ†‘2) ยท (2 / 3)) < ((๐ดโ†‘2) ยท 1)))
3028, 2, 29mp3an12 1449 . . . . . . . 8 (((๐ดโ†‘2) โˆˆ โ„ โˆง 0 < (๐ดโ†‘2)) โ†’ ((2 / 3) < 1 โ†” ((๐ดโ†‘2) ยท (2 / 3)) < ((๐ดโ†‘2) ยท 1)))
3127, 30mpbii 232 . . . . . . 7 (((๐ดโ†‘2) โˆˆ โ„ โˆง 0 < (๐ดโ†‘2)) โ†’ ((๐ดโ†‘2) ยท (2 / 3)) < ((๐ดโ†‘2) ยท 1))
326, 19, 31syl2anc 582 . . . . . 6 (๐ด โˆˆ (0(,]1) โ†’ ((๐ดโ†‘2) ยท (2 / 3)) < ((๐ดโ†‘2) ยท 1))
337mulridd 11235 . . . . . 6 (๐ด โˆˆ (0(,]1) โ†’ ((๐ดโ†‘2) ยท 1) = (๐ดโ†‘2))
3432, 33breqtrd 5173 . . . . 5 (๐ด โˆˆ (0(,]1) โ†’ ((๐ดโ†‘2) ยท (2 / 3)) < (๐ดโ†‘2))
3514, 34eqbrtrd 5169 . . . 4 (๐ด โˆˆ (0(,]1) โ†’ (2 ยท ((๐ดโ†‘2) / 3)) < (๐ดโ†‘2))
36 0re 11220 . . . . . . . . 9 0 โˆˆ โ„
37 ltle 11306 . . . . . . . . 9 ((0 โˆˆ โ„ โˆง ๐ด โˆˆ โ„) โ†’ (0 < ๐ด โ†’ 0 โ‰ค ๐ด))
3836, 37mpan 686 . . . . . . . 8 (๐ด โˆˆ โ„ โ†’ (0 < ๐ด โ†’ 0 โ‰ค ๐ด))
3938imdistani 567 . . . . . . 7 ((๐ด โˆˆ โ„ โˆง 0 < ๐ด) โ†’ (๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด))
40 le2sq2 14104 . . . . . . . 8 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (1 โˆˆ โ„ โˆง ๐ด โ‰ค 1)) โ†’ (๐ดโ†‘2) โ‰ค (1โ†‘2))
412, 40mpanr1 699 . . . . . . 7 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง ๐ด โ‰ค 1) โ†’ (๐ดโ†‘2) โ‰ค (1โ†‘2))
4239, 41stoic3 1776 . . . . . 6 ((๐ด โˆˆ โ„ โˆง 0 < ๐ด โˆง ๐ด โ‰ค 1) โ†’ (๐ดโ†‘2) โ‰ค (1โ†‘2))
434, 42sylbi 216 . . . . 5 (๐ด โˆˆ (0(,]1) โ†’ (๐ดโ†‘2) โ‰ค (1โ†‘2))
44 sq1 14163 . . . . 5 (1โ†‘2) = 1
4543, 44breqtrdi 5188 . . . 4 (๐ด โˆˆ (0(,]1) โ†’ (๐ดโ†‘2) โ‰ค 1)
46 redivcl 11937 . . . . . . . 8 (((๐ดโ†‘2) โˆˆ โ„ โˆง 3 โˆˆ โ„ โˆง 3 โ‰  0) โ†’ ((๐ดโ†‘2) / 3) โˆˆ โ„)
4722, 10, 46mp3an23 1451 . . . . . . 7 ((๐ดโ†‘2) โˆˆ โ„ โ†’ ((๐ดโ†‘2) / 3) โˆˆ โ„)
486, 47syl 17 . . . . . 6 (๐ด โˆˆ (0(,]1) โ†’ ((๐ดโ†‘2) / 3) โˆˆ โ„)
49 remulcl 11197 . . . . . 6 ((2 โˆˆ โ„ โˆง ((๐ดโ†‘2) / 3) โˆˆ โ„) โ†’ (2 ยท ((๐ดโ†‘2) / 3)) โˆˆ โ„)
5021, 48, 49sylancr 585 . . . . 5 (๐ด โˆˆ (0(,]1) โ†’ (2 ยท ((๐ดโ†‘2) / 3)) โˆˆ โ„)
51 ltletr 11310 . . . . . 6 (((2 ยท ((๐ดโ†‘2) / 3)) โˆˆ โ„ โˆง (๐ดโ†‘2) โˆˆ โ„ โˆง 1 โˆˆ โ„) โ†’ (((2 ยท ((๐ดโ†‘2) / 3)) < (๐ดโ†‘2) โˆง (๐ดโ†‘2) โ‰ค 1) โ†’ (2 ยท ((๐ดโ†‘2) / 3)) < 1))
522, 51mp3an3 1448 . . . . 5 (((2 ยท ((๐ดโ†‘2) / 3)) โˆˆ โ„ โˆง (๐ดโ†‘2) โˆˆ โ„) โ†’ (((2 ยท ((๐ดโ†‘2) / 3)) < (๐ดโ†‘2) โˆง (๐ดโ†‘2) โ‰ค 1) โ†’ (2 ยท ((๐ดโ†‘2) / 3)) < 1))
5350, 6, 52syl2anc 582 . . . 4 (๐ด โˆˆ (0(,]1) โ†’ (((2 ยท ((๐ดโ†‘2) / 3)) < (๐ดโ†‘2) โˆง (๐ดโ†‘2) โ‰ค 1) โ†’ (2 ยท ((๐ดโ†‘2) / 3)) < 1))
5435, 45, 53mp2and 695 . . 3 (๐ด โˆˆ (0(,]1) โ†’ (2 ยท ((๐ดโ†‘2) / 3)) < 1)
55 posdif 11711 . . . 4 (((2 ยท ((๐ดโ†‘2) / 3)) โˆˆ โ„ โˆง 1 โˆˆ โ„) โ†’ ((2 ยท ((๐ดโ†‘2) / 3)) < 1 โ†” 0 < (1 โˆ’ (2 ยท ((๐ดโ†‘2) / 3)))))
5650, 2, 55sylancl 584 . . 3 (๐ด โˆˆ (0(,]1) โ†’ ((2 ยท ((๐ดโ†‘2) / 3)) < 1 โ†” 0 < (1 โˆ’ (2 ยท ((๐ดโ†‘2) / 3)))))
5754, 56mpbid 231 . 2 (๐ด โˆˆ (0(,]1) โ†’ 0 < (1 โˆ’ (2 ยท ((๐ดโ†‘2) / 3))))
58 cos01bnd 16133 . . 3 (๐ด โˆˆ (0(,]1) โ†’ ((1 โˆ’ (2 ยท ((๐ดโ†‘2) / 3))) < (cosโ€˜๐ด) โˆง (cosโ€˜๐ด) < (1 โˆ’ ((๐ดโ†‘2) / 3))))
5958simpld 493 . 2 (๐ด โˆˆ (0(,]1) โ†’ (1 โˆ’ (2 ยท ((๐ดโ†‘2) / 3))) < (cosโ€˜๐ด))
60 resubcl 11528 . . . 4 ((1 โˆˆ โ„ โˆง (2 ยท ((๐ดโ†‘2) / 3)) โˆˆ โ„) โ†’ (1 โˆ’ (2 ยท ((๐ดโ†‘2) / 3))) โˆˆ โ„)
612, 50, 60sylancr 585 . . 3 (๐ด โˆˆ (0(,]1) โ†’ (1 โˆ’ (2 ยท ((๐ดโ†‘2) / 3))) โˆˆ โ„)
625recoscld 16091 . . 3 (๐ด โˆˆ (0(,]1) โ†’ (cosโ€˜๐ด) โˆˆ โ„)
63 lttr 11294 . . 3 ((0 โˆˆ โ„ โˆง (1 โˆ’ (2 ยท ((๐ดโ†‘2) / 3))) โˆˆ โ„ โˆง (cosโ€˜๐ด) โˆˆ โ„) โ†’ ((0 < (1 โˆ’ (2 ยท ((๐ดโ†‘2) / 3))) โˆง (1 โˆ’ (2 ยท ((๐ดโ†‘2) / 3))) < (cosโ€˜๐ด)) โ†’ 0 < (cosโ€˜๐ด)))
6436, 61, 62, 63mp3an2i 1464 . 2 (๐ด โˆˆ (0(,]1) โ†’ ((0 < (1 โˆ’ (2 ยท ((๐ดโ†‘2) / 3))) โˆง (1 โˆ’ (2 ยท ((๐ดโ†‘2) / 3))) < (cosโ€˜๐ด)) โ†’ 0 < (cosโ€˜๐ด)))
6557, 59, 64mp2and 695 1 (๐ด โˆˆ (0(,]1) โ†’ 0 < (cosโ€˜๐ด))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 394   โˆง w3a 1085   = wceq 1539   โˆˆ wcel 2104   โ‰  wne 2938   class class class wbr 5147  โ€˜cfv 6542  (class class class)co 7411  โ„‚cc 11110  โ„cr 11111  0cc0 11112  1c1 11113   ยท cmul 11117  โ„*cxr 11251   < clt 11252   โ‰ค cle 11253   โˆ’ cmin 11448   / cdiv 11875  2c2 12271  3c3 12272  โ„คcz 12562  (,]cioc 13329  โ†‘cexp 14031  cosccos 16012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12979  df-ioc 13333  df-ico 13334  df-fz 13489  df-fzo 13632  df-fl 13761  df-seq 13971  df-exp 14032  df-fac 14238  df-hash 14295  df-shft 15018  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-limsup 15419  df-clim 15436  df-rlim 15437  df-sum 15637  df-ef 16015  df-cos 16018
This theorem is referenced by:  sin02gt0  16139  sincos1sgn  16140  tangtx  26251
  Copyright terms: Public domain W3C validator