MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltdivp1i Structured version   Visualization version   GIF version

Theorem ltdivp1i 11569
Description: Less-than and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 17-Sep-2005.)
Hypotheses
Ref Expression
ltplus1.1 𝐴 ∈ ℝ
prodgt0.2 𝐵 ∈ ℝ
ltmul1.3 𝐶 ∈ ℝ
Assertion
Ref Expression
ltdivp1i ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) < 𝐵)

Proof of Theorem ltdivp1i
StepHypRef Expression
1 ltplus1.1 . . . 4 𝐴 ∈ ℝ
2 ltmul1.3 . . . . 5 𝐶 ∈ ℝ
3 1re 10644 . . . . . 6 1 ∈ ℝ
42, 3readdcli 10659 . . . . 5 (𝐶 + 1) ∈ ℝ
52ltp1i 11547 . . . . . . 7 𝐶 < (𝐶 + 1)
62, 4, 5ltleii 10766 . . . . . 6 𝐶 ≤ (𝐶 + 1)
7 lemul2a 11498 . . . . . 6 (((𝐶 ∈ ℝ ∧ (𝐶 + 1) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝐶 ≤ (𝐶 + 1)) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
86, 7mpan2 689 . . . . 5 ((𝐶 ∈ ℝ ∧ (𝐶 + 1) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
92, 4, 8mp3an12 1447 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
101, 9mpan 688 . . 3 (0 ≤ 𝐴 → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
11103ad2ant1 1129 . 2 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
12 0re 10646 . . . . . . . 8 0 ∈ ℝ
1312, 2, 4lelttri 10770 . . . . . . 7 ((0 ≤ 𝐶𝐶 < (𝐶 + 1)) → 0 < (𝐶 + 1))
145, 13mpan2 689 . . . . . 6 (0 ≤ 𝐶 → 0 < (𝐶 + 1))
154gt0ne0i 11178 . . . . . . . . 9 (0 < (𝐶 + 1) → (𝐶 + 1) ≠ 0)
16 prodgt0.2 . . . . . . . . . 10 𝐵 ∈ ℝ
1716, 4redivclzi 11409 . . . . . . . . 9 ((𝐶 + 1) ≠ 0 → (𝐵 / (𝐶 + 1)) ∈ ℝ)
1815, 17syl 17 . . . . . . . 8 (0 < (𝐶 + 1) → (𝐵 / (𝐶 + 1)) ∈ ℝ)
19 ltmul1 11493 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 / (𝐶 + 1)) ∈ ℝ ∧ ((𝐶 + 1) ∈ ℝ ∧ 0 < (𝐶 + 1))) → (𝐴 < (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
201, 19mp3an1 1444 . . . . . . . . 9 (((𝐵 / (𝐶 + 1)) ∈ ℝ ∧ ((𝐶 + 1) ∈ ℝ ∧ 0 < (𝐶 + 1))) → (𝐴 < (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
214, 20mpanr1 701 . . . . . . . 8 (((𝐵 / (𝐶 + 1)) ∈ ℝ ∧ 0 < (𝐶 + 1)) → (𝐴 < (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2218, 21mpancom 686 . . . . . . 7 (0 < (𝐶 + 1) → (𝐴 < (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2322biimpd 231 . . . . . 6 (0 < (𝐶 + 1) → (𝐴 < (𝐵 / (𝐶 + 1)) → (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2414, 23syl 17 . . . . 5 (0 ≤ 𝐶 → (𝐴 < (𝐵 / (𝐶 + 1)) → (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2524imp 409 . . . 4 ((0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)))
2616recni 10658 . . . . . . 7 𝐵 ∈ ℂ
274recni 10658 . . . . . . 7 (𝐶 + 1) ∈ ℂ
2826, 27divcan1zi 11379 . . . . . 6 ((𝐶 + 1) ≠ 0 → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
2914, 15, 283syl 18 . . . . 5 (0 ≤ 𝐶 → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
3029adantr 483 . . . 4 ((0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
3125, 30breqtrd 5095 . . 3 ((0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) < 𝐵)
32313adant1 1126 . 2 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) < 𝐵)
331, 2remulcli 10660 . . 3 (𝐴 · 𝐶) ∈ ℝ
341, 4remulcli 10660 . . 3 (𝐴 · (𝐶 + 1)) ∈ ℝ
3533, 34, 16lelttri 10770 . 2 (((𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)) ∧ (𝐴 · (𝐶 + 1)) < 𝐵) → (𝐴 · 𝐶) < 𝐵)
3611, 32, 35syl2anc 586 1 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019   class class class wbr 5069  (class class class)co 7159  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545   < clt 10678  cle 10679   / cdiv 11300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator