MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltdivp1i Structured version   Visualization version   GIF version

Theorem ltdivp1i 12194
Description: Less-than and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 17-Sep-2005.)
Hypotheses
Ref Expression
ltplus1.1 𝐴 ∈ ℝ
prodgt0.2 𝐵 ∈ ℝ
ltmul1.3 𝐶 ∈ ℝ
Assertion
Ref Expression
ltdivp1i ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) < 𝐵)

Proof of Theorem ltdivp1i
StepHypRef Expression
1 ltplus1.1 . . . 4 𝐴 ∈ ℝ
2 ltmul1.3 . . . . 5 𝐶 ∈ ℝ
3 1re 11261 . . . . . 6 1 ∈ ℝ
42, 3readdcli 11276 . . . . 5 (𝐶 + 1) ∈ ℝ
52ltp1i 12172 . . . . . . 7 𝐶 < (𝐶 + 1)
62, 4, 5ltleii 11384 . . . . . 6 𝐶 ≤ (𝐶 + 1)
7 lemul2a 12122 . . . . . 6 (((𝐶 ∈ ℝ ∧ (𝐶 + 1) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝐶 ≤ (𝐶 + 1)) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
86, 7mpan2 691 . . . . 5 ((𝐶 ∈ ℝ ∧ (𝐶 + 1) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
92, 4, 8mp3an12 1453 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
101, 9mpan 690 . . 3 (0 ≤ 𝐴 → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
11103ad2ant1 1134 . 2 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
12 0re 11263 . . . . . . . 8 0 ∈ ℝ
1312, 2, 4lelttri 11388 . . . . . . 7 ((0 ≤ 𝐶𝐶 < (𝐶 + 1)) → 0 < (𝐶 + 1))
145, 13mpan2 691 . . . . . 6 (0 ≤ 𝐶 → 0 < (𝐶 + 1))
154gt0ne0i 11798 . . . . . . . . 9 (0 < (𝐶 + 1) → (𝐶 + 1) ≠ 0)
16 prodgt0.2 . . . . . . . . . 10 𝐵 ∈ ℝ
1716, 4redivclzi 12033 . . . . . . . . 9 ((𝐶 + 1) ≠ 0 → (𝐵 / (𝐶 + 1)) ∈ ℝ)
1815, 17syl 17 . . . . . . . 8 (0 < (𝐶 + 1) → (𝐵 / (𝐶 + 1)) ∈ ℝ)
19 ltmul1 12117 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 / (𝐶 + 1)) ∈ ℝ ∧ ((𝐶 + 1) ∈ ℝ ∧ 0 < (𝐶 + 1))) → (𝐴 < (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
201, 19mp3an1 1450 . . . . . . . . 9 (((𝐵 / (𝐶 + 1)) ∈ ℝ ∧ ((𝐶 + 1) ∈ ℝ ∧ 0 < (𝐶 + 1))) → (𝐴 < (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
214, 20mpanr1 703 . . . . . . . 8 (((𝐵 / (𝐶 + 1)) ∈ ℝ ∧ 0 < (𝐶 + 1)) → (𝐴 < (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2218, 21mpancom 688 . . . . . . 7 (0 < (𝐶 + 1) → (𝐴 < (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2322biimpd 229 . . . . . 6 (0 < (𝐶 + 1) → (𝐴 < (𝐵 / (𝐶 + 1)) → (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2414, 23syl 17 . . . . 5 (0 ≤ 𝐶 → (𝐴 < (𝐵 / (𝐶 + 1)) → (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2524imp 406 . . . 4 ((0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)))
2616recni 11275 . . . . . . 7 𝐵 ∈ ℂ
274recni 11275 . . . . . . 7 (𝐶 + 1) ∈ ℂ
2826, 27divcan1zi 12003 . . . . . 6 ((𝐶 + 1) ≠ 0 → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
2914, 15, 283syl 18 . . . . 5 (0 ≤ 𝐶 → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
3029adantr 480 . . . 4 ((0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
3125, 30breqtrd 5169 . . 3 ((0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) < 𝐵)
32313adant1 1131 . 2 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) < 𝐵)
331, 2remulcli 11277 . . 3 (𝐴 · 𝐶) ∈ ℝ
341, 4remulcli 11277 . . 3 (𝐴 · (𝐶 + 1)) ∈ ℝ
3533, 34, 16lelttri 11388 . 2 (((𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)) ∧ (𝐴 · (𝐶 + 1)) < 𝐵) → (𝐴 · 𝐶) < 𝐵)
3611, 32, 35syl2anc 584 1 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296   / cdiv 11920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator