MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltdivp1i Structured version   Visualization version   GIF version

Theorem ltdivp1i 12192
Description: Less-than and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 17-Sep-2005.)
Hypotheses
Ref Expression
ltplus1.1 𝐴 ∈ ℝ
prodgt0.2 𝐵 ∈ ℝ
ltmul1.3 𝐶 ∈ ℝ
Assertion
Ref Expression
ltdivp1i ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) < 𝐵)

Proof of Theorem ltdivp1i
StepHypRef Expression
1 ltplus1.1 . . . 4 𝐴 ∈ ℝ
2 ltmul1.3 . . . . 5 𝐶 ∈ ℝ
3 1re 11259 . . . . . 6 1 ∈ ℝ
42, 3readdcli 11274 . . . . 5 (𝐶 + 1) ∈ ℝ
52ltp1i 12170 . . . . . . 7 𝐶 < (𝐶 + 1)
62, 4, 5ltleii 11382 . . . . . 6 𝐶 ≤ (𝐶 + 1)
7 lemul2a 12120 . . . . . 6 (((𝐶 ∈ ℝ ∧ (𝐶 + 1) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝐶 ≤ (𝐶 + 1)) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
86, 7mpan2 691 . . . . 5 ((𝐶 ∈ ℝ ∧ (𝐶 + 1) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
92, 4, 8mp3an12 1450 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
101, 9mpan 690 . . 3 (0 ≤ 𝐴 → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
11103ad2ant1 1132 . 2 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
12 0re 11261 . . . . . . . 8 0 ∈ ℝ
1312, 2, 4lelttri 11386 . . . . . . 7 ((0 ≤ 𝐶𝐶 < (𝐶 + 1)) → 0 < (𝐶 + 1))
145, 13mpan2 691 . . . . . 6 (0 ≤ 𝐶 → 0 < (𝐶 + 1))
154gt0ne0i 11796 . . . . . . . . 9 (0 < (𝐶 + 1) → (𝐶 + 1) ≠ 0)
16 prodgt0.2 . . . . . . . . . 10 𝐵 ∈ ℝ
1716, 4redivclzi 12031 . . . . . . . . 9 ((𝐶 + 1) ≠ 0 → (𝐵 / (𝐶 + 1)) ∈ ℝ)
1815, 17syl 17 . . . . . . . 8 (0 < (𝐶 + 1) → (𝐵 / (𝐶 + 1)) ∈ ℝ)
19 ltmul1 12115 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 / (𝐶 + 1)) ∈ ℝ ∧ ((𝐶 + 1) ∈ ℝ ∧ 0 < (𝐶 + 1))) → (𝐴 < (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
201, 19mp3an1 1447 . . . . . . . . 9 (((𝐵 / (𝐶 + 1)) ∈ ℝ ∧ ((𝐶 + 1) ∈ ℝ ∧ 0 < (𝐶 + 1))) → (𝐴 < (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
214, 20mpanr1 703 . . . . . . . 8 (((𝐵 / (𝐶 + 1)) ∈ ℝ ∧ 0 < (𝐶 + 1)) → (𝐴 < (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2218, 21mpancom 688 . . . . . . 7 (0 < (𝐶 + 1) → (𝐴 < (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2322biimpd 229 . . . . . 6 (0 < (𝐶 + 1) → (𝐴 < (𝐵 / (𝐶 + 1)) → (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2414, 23syl 17 . . . . 5 (0 ≤ 𝐶 → (𝐴 < (𝐵 / (𝐶 + 1)) → (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2524imp 406 . . . 4 ((0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)))
2616recni 11273 . . . . . . 7 𝐵 ∈ ℂ
274recni 11273 . . . . . . 7 (𝐶 + 1) ∈ ℂ
2826, 27divcan1zi 12001 . . . . . 6 ((𝐶 + 1) ≠ 0 → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
2914, 15, 283syl 18 . . . . 5 (0 ≤ 𝐶 → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
3029adantr 480 . . . 4 ((0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
3125, 30breqtrd 5174 . . 3 ((0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) < 𝐵)
32313adant1 1129 . 2 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) < 𝐵)
331, 2remulcli 11275 . . 3 (𝐴 · 𝐶) ∈ ℝ
341, 4remulcli 11275 . . 3 (𝐴 · (𝐶 + 1)) ∈ ℝ
3533, 34, 16lelttri 11386 . 2 (((𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)) ∧ (𝐴 · (𝐶 + 1)) < 𝐵) → (𝐴 · 𝐶) < 𝐵)
3611, 32, 35syl2anc 584 1 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294   / cdiv 11918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator