MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltdivp1i Structured version   Visualization version   GIF version

Theorem ltdivp1i 11564
Description: Less-than and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 17-Sep-2005.)
Hypotheses
Ref Expression
ltplus1.1 𝐴 ∈ ℝ
prodgt0.2 𝐵 ∈ ℝ
ltmul1.3 𝐶 ∈ ℝ
Assertion
Ref Expression
ltdivp1i ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) < 𝐵)

Proof of Theorem ltdivp1i
StepHypRef Expression
1 ltplus1.1 . . . 4 𝐴 ∈ ℝ
2 ltmul1.3 . . . . 5 𝐶 ∈ ℝ
3 1re 10639 . . . . . 6 1 ∈ ℝ
42, 3readdcli 10654 . . . . 5 (𝐶 + 1) ∈ ℝ
52ltp1i 11542 . . . . . . 7 𝐶 < (𝐶 + 1)
62, 4, 5ltleii 10761 . . . . . 6 𝐶 ≤ (𝐶 + 1)
7 lemul2a 11493 . . . . . 6 (((𝐶 ∈ ℝ ∧ (𝐶 + 1) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝐶 ≤ (𝐶 + 1)) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
86, 7mpan2 690 . . . . 5 ((𝐶 ∈ ℝ ∧ (𝐶 + 1) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
92, 4, 8mp3an12 1448 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
101, 9mpan 689 . . 3 (0 ≤ 𝐴 → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
11103ad2ant1 1130 . 2 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
12 0re 10641 . . . . . . . 8 0 ∈ ℝ
1312, 2, 4lelttri 10765 . . . . . . 7 ((0 ≤ 𝐶𝐶 < (𝐶 + 1)) → 0 < (𝐶 + 1))
145, 13mpan2 690 . . . . . 6 (0 ≤ 𝐶 → 0 < (𝐶 + 1))
154gt0ne0i 11173 . . . . . . . . 9 (0 < (𝐶 + 1) → (𝐶 + 1) ≠ 0)
16 prodgt0.2 . . . . . . . . . 10 𝐵 ∈ ℝ
1716, 4redivclzi 11404 . . . . . . . . 9 ((𝐶 + 1) ≠ 0 → (𝐵 / (𝐶 + 1)) ∈ ℝ)
1815, 17syl 17 . . . . . . . 8 (0 < (𝐶 + 1) → (𝐵 / (𝐶 + 1)) ∈ ℝ)
19 ltmul1 11488 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 / (𝐶 + 1)) ∈ ℝ ∧ ((𝐶 + 1) ∈ ℝ ∧ 0 < (𝐶 + 1))) → (𝐴 < (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
201, 19mp3an1 1445 . . . . . . . . 9 (((𝐵 / (𝐶 + 1)) ∈ ℝ ∧ ((𝐶 + 1) ∈ ℝ ∧ 0 < (𝐶 + 1))) → (𝐴 < (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
214, 20mpanr1 702 . . . . . . . 8 (((𝐵 / (𝐶 + 1)) ∈ ℝ ∧ 0 < (𝐶 + 1)) → (𝐴 < (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2218, 21mpancom 687 . . . . . . 7 (0 < (𝐶 + 1) → (𝐴 < (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2322biimpd 232 . . . . . 6 (0 < (𝐶 + 1) → (𝐴 < (𝐵 / (𝐶 + 1)) → (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2414, 23syl 17 . . . . 5 (0 ≤ 𝐶 → (𝐴 < (𝐵 / (𝐶 + 1)) → (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2524imp 410 . . . 4 ((0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) < ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)))
2616recni 10653 . . . . . . 7 𝐵 ∈ ℂ
274recni 10653 . . . . . . 7 (𝐶 + 1) ∈ ℂ
2826, 27divcan1zi 11374 . . . . . 6 ((𝐶 + 1) ≠ 0 → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
2914, 15, 283syl 18 . . . . 5 (0 ≤ 𝐶 → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
3029adantr 484 . . . 4 ((0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
3125, 30breqtrd 5078 . . 3 ((0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) < 𝐵)
32313adant1 1127 . 2 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) < 𝐵)
331, 2remulcli 10655 . . 3 (𝐴 · 𝐶) ∈ ℝ
341, 4remulcli 10655 . . 3 (𝐴 · (𝐶 + 1)) ∈ ℝ
3533, 34, 16lelttri 10765 . 2 (((𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)) ∧ (𝐴 · (𝐶 + 1)) < 𝐵) → (𝐴 · 𝐶) < 𝐵)
3611, 32, 35syl2anc 587 1 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014   class class class wbr 5052  (class class class)co 7149  cr 10534  0cc0 10535  1c1 10536   + caddc 10538   · cmul 10540   < clt 10673  cle 10674   / cdiv 11295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-po 5461  df-so 5462  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator