MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspmval Structured version   Visualization version   GIF version

Theorem sspmval 30724
Description: Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspm.y 𝑌 = (BaseSet‘𝑊)
sspm.m 𝑀 = ( −𝑣𝑈)
sspm.l 𝐿 = ( −𝑣𝑊)
sspm.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspmval (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐿𝐵) = (𝐴𝑀𝐵))

Proof of Theorem sspmval
StepHypRef Expression
1 sspm.h . . . . . . . 8 𝐻 = (SubSp‘𝑈)
21sspnv 30717 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
3 neg1cn 12120 . . . . . . . . 9 -1 ∈ ℂ
4 sspm.y . . . . . . . . . 10 𝑌 = (BaseSet‘𝑊)
5 eqid 2733 . . . . . . . . . 10 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
64, 5nvscl 30617 . . . . . . . . 9 ((𝑊 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑌) → (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌)
73, 6mp3an2 1451 . . . . . . . 8 ((𝑊 ∈ NrmCVec ∧ 𝐵𝑌) → (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌)
87ex 412 . . . . . . 7 (𝑊 ∈ NrmCVec → (𝐵𝑌 → (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌))
92, 8syl 17 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐵𝑌 → (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌))
109anim2d 612 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ((𝐴𝑌𝐵𝑌) → (𝐴𝑌 ∧ (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌)))
1110imp 406 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝑌 ∧ (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌))
12 eqid 2733 . . . . 5 ( +𝑣𝑈) = ( +𝑣𝑈)
13 eqid 2733 . . . . 5 ( +𝑣𝑊) = ( +𝑣𝑊)
144, 12, 13, 1sspgval 30720 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌 ∧ (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌)) → (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑊)𝐵)))
1511, 14syldan 591 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑊)𝐵)))
16 eqid 2733 . . . . . . 7 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
174, 16, 5, 1sspsval 30722 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (-1 ∈ ℂ ∧ 𝐵𝑌)) → (-1( ·𝑠OLD𝑊)𝐵) = (-1( ·𝑠OLD𝑈)𝐵))
183, 17mpanr1 703 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ 𝐵𝑌) → (-1( ·𝑠OLD𝑊)𝐵) = (-1( ·𝑠OLD𝑈)𝐵))
1918adantrl 716 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (-1( ·𝑠OLD𝑊)𝐵) = (-1( ·𝑠OLD𝑈)𝐵))
2019oveq2d 7371 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑊)𝐵)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
2115, 20eqtrd 2768 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
22 sspm.l . . . . 5 𝐿 = ( −𝑣𝑊)
234, 13, 5, 22nvmval 30633 . . . 4 ((𝑊 ∈ NrmCVec ∧ 𝐴𝑌𝐵𝑌) → (𝐴𝐿𝐵) = (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)))
24233expb 1120 . . 3 ((𝑊 ∈ NrmCVec ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐿𝐵) = (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)))
252, 24sylan 580 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐿𝐵) = (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)))
26 eqid 2733 . . . . . . 7 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2726, 4, 1sspba 30718 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌 ⊆ (BaseSet‘𝑈))
2827sseld 3930 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐴𝑌𝐴 ∈ (BaseSet‘𝑈)))
2927sseld 3930 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐵𝑌𝐵 ∈ (BaseSet‘𝑈)))
3028, 29anim12d 609 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ((𝐴𝑌𝐵𝑌) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))))
3130imp 406 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)))
32 sspm.m . . . . . 6 𝑀 = ( −𝑣𝑈)
3326, 12, 16, 32nvmval 30633 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
34333expb 1120 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
3534adantlr 715 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
3631, 35syldan 591 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
3721, 25, 363eqtr4d 2778 1 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐿𝐵) = (𝐴𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cfv 6489  (class class class)co 7355  cc 11014  1c1 11017  -cneg 11355  NrmCVeccnv 30575   +𝑣 cpv 30576  BaseSetcba 30577   ·𝑠OLD cns 30578  𝑣 cnsb 30580  SubSpcss 30712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-pnf 11158  df-mnf 11159  df-ltxr 11161  df-sub 11356  df-neg 11357  df-grpo 30484  df-gid 30485  df-ginv 30486  df-gdiv 30487  df-ablo 30536  df-vc 30550  df-nv 30583  df-va 30586  df-ba 30587  df-sm 30588  df-0v 30589  df-vs 30590  df-nmcv 30591  df-ssp 30713
This theorem is referenced by:  sspm  30725  sspz  30726  sspimsval  30729
  Copyright terms: Public domain W3C validator