MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspmval Structured version   Visualization version   GIF version

Theorem sspmval 29964
Description: Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspm.y 𝑌 = (BaseSet‘𝑊)
sspm.m 𝑀 = ( −𝑣𝑈)
sspm.l 𝐿 = ( −𝑣𝑊)
sspm.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspmval (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐿𝐵) = (𝐴𝑀𝐵))

Proof of Theorem sspmval
StepHypRef Expression
1 sspm.h . . . . . . . 8 𝐻 = (SubSp‘𝑈)
21sspnv 29957 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
3 neg1cn 12322 . . . . . . . . 9 -1 ∈ ℂ
4 sspm.y . . . . . . . . . 10 𝑌 = (BaseSet‘𝑊)
5 eqid 2733 . . . . . . . . . 10 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
64, 5nvscl 29857 . . . . . . . . 9 ((𝑊 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑌) → (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌)
73, 6mp3an2 1450 . . . . . . . 8 ((𝑊 ∈ NrmCVec ∧ 𝐵𝑌) → (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌)
87ex 414 . . . . . . 7 (𝑊 ∈ NrmCVec → (𝐵𝑌 → (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌))
92, 8syl 17 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐵𝑌 → (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌))
109anim2d 613 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ((𝐴𝑌𝐵𝑌) → (𝐴𝑌 ∧ (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌)))
1110imp 408 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝑌 ∧ (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌))
12 eqid 2733 . . . . 5 ( +𝑣𝑈) = ( +𝑣𝑈)
13 eqid 2733 . . . . 5 ( +𝑣𝑊) = ( +𝑣𝑊)
144, 12, 13, 1sspgval 29960 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌 ∧ (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌)) → (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑊)𝐵)))
1511, 14syldan 592 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑊)𝐵)))
16 eqid 2733 . . . . . . 7 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
174, 16, 5, 1sspsval 29962 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (-1 ∈ ℂ ∧ 𝐵𝑌)) → (-1( ·𝑠OLD𝑊)𝐵) = (-1( ·𝑠OLD𝑈)𝐵))
183, 17mpanr1 702 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ 𝐵𝑌) → (-1( ·𝑠OLD𝑊)𝐵) = (-1( ·𝑠OLD𝑈)𝐵))
1918adantrl 715 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (-1( ·𝑠OLD𝑊)𝐵) = (-1( ·𝑠OLD𝑈)𝐵))
2019oveq2d 7420 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑊)𝐵)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
2115, 20eqtrd 2773 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
22 sspm.l . . . . 5 𝐿 = ( −𝑣𝑊)
234, 13, 5, 22nvmval 29873 . . . 4 ((𝑊 ∈ NrmCVec ∧ 𝐴𝑌𝐵𝑌) → (𝐴𝐿𝐵) = (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)))
24233expb 1121 . . 3 ((𝑊 ∈ NrmCVec ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐿𝐵) = (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)))
252, 24sylan 581 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐿𝐵) = (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)))
26 eqid 2733 . . . . . . 7 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2726, 4, 1sspba 29958 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌 ⊆ (BaseSet‘𝑈))
2827sseld 3980 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐴𝑌𝐴 ∈ (BaseSet‘𝑈)))
2927sseld 3980 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐵𝑌𝐵 ∈ (BaseSet‘𝑈)))
3028, 29anim12d 610 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ((𝐴𝑌𝐵𝑌) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))))
3130imp 408 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)))
32 sspm.m . . . . . 6 𝑀 = ( −𝑣𝑈)
3326, 12, 16, 32nvmval 29873 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
34333expb 1121 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
3534adantlr 714 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
3631, 35syldan 592 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
3721, 25, 363eqtr4d 2783 1 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐿𝐵) = (𝐴𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cfv 6540  (class class class)co 7404  cc 11104  1c1 11107  -cneg 11441  NrmCVeccnv 29815   +𝑣 cpv 29816  BaseSetcba 29817   ·𝑠OLD cns 29818  𝑣 cnsb 29820  SubSpcss 29952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7970  df-2nd 7971  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-ltxr 11249  df-sub 11442  df-neg 11443  df-grpo 29724  df-gid 29725  df-ginv 29726  df-gdiv 29727  df-ablo 29776  df-vc 29790  df-nv 29823  df-va 29826  df-ba 29827  df-sm 29828  df-0v 29829  df-vs 29830  df-nmcv 29831  df-ssp 29953
This theorem is referenced by:  sspm  29965  sspz  29966  sspimsval  29969
  Copyright terms: Public domain W3C validator