Proof of Theorem sspmval
Step | Hyp | Ref
| Expression |
1 | | sspm.h |
. . . . . . . 8
⊢ 𝐻 = (SubSp‘𝑈) |
2 | 1 | sspnv 28807 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) |
3 | | neg1cn 11944 |
. . . . . . . . 9
⊢ -1 ∈
ℂ |
4 | | sspm.y |
. . . . . . . . . 10
⊢ 𝑌 = (BaseSet‘𝑊) |
5 | | eqid 2737 |
. . . . . . . . . 10
⊢ (
·𝑠OLD ‘𝑊) = ( ·𝑠OLD
‘𝑊) |
6 | 4, 5 | nvscl 28707 |
. . . . . . . . 9
⊢ ((𝑊 ∈ NrmCVec ∧ -1 ∈
ℂ ∧ 𝐵 ∈
𝑌) → (-1(
·𝑠OLD ‘𝑊)𝐵) ∈ 𝑌) |
7 | 3, 6 | mp3an2 1451 |
. . . . . . . 8
⊢ ((𝑊 ∈ NrmCVec ∧ 𝐵 ∈ 𝑌) → (-1(
·𝑠OLD ‘𝑊)𝐵) ∈ 𝑌) |
8 | 7 | ex 416 |
. . . . . . 7
⊢ (𝑊 ∈ NrmCVec → (𝐵 ∈ 𝑌 → (-1(
·𝑠OLD ‘𝑊)𝐵) ∈ 𝑌)) |
9 | 2, 8 | syl 17 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝐵 ∈ 𝑌 → (-1(
·𝑠OLD ‘𝑊)𝐵) ∈ 𝑌)) |
10 | 9 | anim2d 615 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) → (𝐴 ∈ 𝑌 ∧ (-1(
·𝑠OLD ‘𝑊)𝐵) ∈ 𝑌))) |
11 | 10 | imp 410 |
. . . 4
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴 ∈ 𝑌 ∧ (-1(
·𝑠OLD ‘𝑊)𝐵) ∈ 𝑌)) |
12 | | eqid 2737 |
. . . . 5
⊢ (
+𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) |
13 | | eqid 2737 |
. . . . 5
⊢ (
+𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) |
14 | 4, 12, 13, 1 | sspgval 28810 |
. . . 4
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ (-1(
·𝑠OLD ‘𝑊)𝐵) ∈ 𝑌)) → (𝐴( +𝑣 ‘𝑊)(-1(
·𝑠OLD ‘𝑊)𝐵)) = (𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑊)𝐵))) |
15 | 11, 14 | syldan 594 |
. . 3
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴( +𝑣 ‘𝑊)(-1(
·𝑠OLD ‘𝑊)𝐵)) = (𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑊)𝐵))) |
16 | | eqid 2737 |
. . . . . . 7
⊢ (
·𝑠OLD ‘𝑈) = ( ·𝑠OLD
‘𝑈) |
17 | 4, 16, 5, 1 | sspsval 28812 |
. . . . . 6
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (-1 ∈ ℂ ∧ 𝐵 ∈ 𝑌)) → (-1(
·𝑠OLD ‘𝑊)𝐵) = (-1(
·𝑠OLD ‘𝑈)𝐵)) |
18 | 3, 17 | mpanr1 703 |
. . . . 5
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ 𝐵 ∈ 𝑌) → (-1(
·𝑠OLD ‘𝑊)𝐵) = (-1(
·𝑠OLD ‘𝑈)𝐵)) |
19 | 18 | adantrl 716 |
. . . 4
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (-1(
·𝑠OLD ‘𝑊)𝐵) = (-1(
·𝑠OLD ‘𝑈)𝐵)) |
20 | 19 | oveq2d 7229 |
. . 3
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑊)𝐵)) = (𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵))) |
21 | 15, 20 | eqtrd 2777 |
. 2
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴( +𝑣 ‘𝑊)(-1(
·𝑠OLD ‘𝑊)𝐵)) = (𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵))) |
22 | | sspm.l |
. . . . 5
⊢ 𝐿 = ( −𝑣
‘𝑊) |
23 | 4, 13, 5, 22 | nvmval 28723 |
. . . 4
⊢ ((𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) → (𝐴𝐿𝐵) = (𝐴( +𝑣 ‘𝑊)(-1(
·𝑠OLD ‘𝑊)𝐵))) |
24 | 23 | 3expb 1122 |
. . 3
⊢ ((𝑊 ∈ NrmCVec ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐿𝐵) = (𝐴( +𝑣 ‘𝑊)(-1(
·𝑠OLD ‘𝑊)𝐵))) |
25 | 2, 24 | sylan 583 |
. 2
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐿𝐵) = (𝐴( +𝑣 ‘𝑊)(-1(
·𝑠OLD ‘𝑊)𝐵))) |
26 | | eqid 2737 |
. . . . . . 7
⊢
(BaseSet‘𝑈) =
(BaseSet‘𝑈) |
27 | 26, 4, 1 | sspba 28808 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑌 ⊆ (BaseSet‘𝑈)) |
28 | 27 | sseld 3900 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝐴 ∈ 𝑌 → 𝐴 ∈ (BaseSet‘𝑈))) |
29 | 27 | sseld 3900 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝐵 ∈ 𝑌 → 𝐵 ∈ (BaseSet‘𝑈))) |
30 | 28, 29 | anim12d 612 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)))) |
31 | 30 | imp 410 |
. . 3
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) |
32 | | sspm.m |
. . . . . 6
⊢ 𝑀 = ( −𝑣
‘𝑈) |
33 | 26, 12, 16, 32 | nvmval 28723 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)) → (𝐴𝑀𝐵) = (𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵))) |
34 | 33 | 3expb 1122 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝑀𝐵) = (𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵))) |
35 | 34 | adantlr 715 |
. . 3
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝑀𝐵) = (𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵))) |
36 | 31, 35 | syldan 594 |
. 2
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝑀𝐵) = (𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐵))) |
37 | 21, 25, 36 | 3eqtr4d 2787 |
1
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐿𝐵) = (𝐴𝑀𝐵)) |