MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspmval Structured version   Visualization version   GIF version

Theorem sspmval 28510
Description: Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspm.y 𝑌 = (BaseSet‘𝑊)
sspm.m 𝑀 = ( −𝑣𝑈)
sspm.l 𝐿 = ( −𝑣𝑊)
sspm.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspmval (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐿𝐵) = (𝐴𝑀𝐵))

Proof of Theorem sspmval
StepHypRef Expression
1 sspm.h . . . . . . . 8 𝐻 = (SubSp‘𝑈)
21sspnv 28503 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
3 neg1cn 11752 . . . . . . . . 9 -1 ∈ ℂ
4 sspm.y . . . . . . . . . 10 𝑌 = (BaseSet‘𝑊)
5 eqid 2821 . . . . . . . . . 10 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
64, 5nvscl 28403 . . . . . . . . 9 ((𝑊 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑌) → (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌)
73, 6mp3an2 1445 . . . . . . . 8 ((𝑊 ∈ NrmCVec ∧ 𝐵𝑌) → (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌)
87ex 415 . . . . . . 7 (𝑊 ∈ NrmCVec → (𝐵𝑌 → (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌))
92, 8syl 17 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐵𝑌 → (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌))
109anim2d 613 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ((𝐴𝑌𝐵𝑌) → (𝐴𝑌 ∧ (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌)))
1110imp 409 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝑌 ∧ (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌))
12 eqid 2821 . . . . 5 ( +𝑣𝑈) = ( +𝑣𝑈)
13 eqid 2821 . . . . 5 ( +𝑣𝑊) = ( +𝑣𝑊)
144, 12, 13, 1sspgval 28506 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌 ∧ (-1( ·𝑠OLD𝑊)𝐵) ∈ 𝑌)) → (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑊)𝐵)))
1511, 14syldan 593 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑊)𝐵)))
16 eqid 2821 . . . . . . 7 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
174, 16, 5, 1sspsval 28508 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (-1 ∈ ℂ ∧ 𝐵𝑌)) → (-1( ·𝑠OLD𝑊)𝐵) = (-1( ·𝑠OLD𝑈)𝐵))
183, 17mpanr1 701 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ 𝐵𝑌) → (-1( ·𝑠OLD𝑊)𝐵) = (-1( ·𝑠OLD𝑈)𝐵))
1918adantrl 714 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (-1( ·𝑠OLD𝑊)𝐵) = (-1( ·𝑠OLD𝑈)𝐵))
2019oveq2d 7172 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑊)𝐵)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
2115, 20eqtrd 2856 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
22 sspm.l . . . . 5 𝐿 = ( −𝑣𝑊)
234, 13, 5, 22nvmval 28419 . . . 4 ((𝑊 ∈ NrmCVec ∧ 𝐴𝑌𝐵𝑌) → (𝐴𝐿𝐵) = (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)))
24233expb 1116 . . 3 ((𝑊 ∈ NrmCVec ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐿𝐵) = (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)))
252, 24sylan 582 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐿𝐵) = (𝐴( +𝑣𝑊)(-1( ·𝑠OLD𝑊)𝐵)))
26 eqid 2821 . . . . . . 7 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2726, 4, 1sspba 28504 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌 ⊆ (BaseSet‘𝑈))
2827sseld 3966 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐴𝑌𝐴 ∈ (BaseSet‘𝑈)))
2927sseld 3966 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐵𝑌𝐵 ∈ (BaseSet‘𝑈)))
3028, 29anim12d 610 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ((𝐴𝑌𝐵𝑌) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))))
3130imp 409 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)))
32 sspm.m . . . . . 6 𝑀 = ( −𝑣𝑈)
3326, 12, 16, 32nvmval 28419 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈)) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
34333expb 1116 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
3534adantlr 713 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴 ∈ (BaseSet‘𝑈) ∧ 𝐵 ∈ (BaseSet‘𝑈))) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
3631, 35syldan 593 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
3721, 25, 363eqtr4d 2866 1 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐿𝐵) = (𝐴𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  cc 10535  1c1 10538  -cneg 10871  NrmCVeccnv 28361   +𝑣 cpv 28362  BaseSetcba 28363   ·𝑠OLD cns 28364  𝑣 cnsb 28366  SubSpcss 28498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-ltxr 10680  df-sub 10872  df-neg 10873  df-grpo 28270  df-gid 28271  df-ginv 28272  df-gdiv 28273  df-ablo 28322  df-vc 28336  df-nv 28369  df-va 28372  df-ba 28373  df-sm 28374  df-0v 28375  df-vs 28376  df-nmcv 28377  df-ssp 28499
This theorem is referenced by:  sspm  28511  sspz  28512  sspimsval  28515
  Copyright terms: Public domain W3C validator