MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zmin Structured version   Visualization version   GIF version

Theorem zmin 13009
Description: There is a unique smallest integer greater than or equal to a given real number. (Contributed by NM, 12-Nov-2004.) (Revised by Mario Carneiro, 13-Jun-2014.)
Assertion
Ref Expression
zmin (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem zmin
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnssz 12661 . . . . . 6 ℕ ⊆ ℤ
2 arch 12550 . . . . . 6 (𝐴 ∈ ℝ → ∃𝑧 ∈ ℕ 𝐴 < 𝑧)
3 ssrexv 4078 . . . . . 6 (ℕ ⊆ ℤ → (∃𝑧 ∈ ℕ 𝐴 < 𝑧 → ∃𝑧 ∈ ℤ 𝐴 < 𝑧))
41, 2, 3mpsyl 68 . . . . 5 (𝐴 ∈ ℝ → ∃𝑧 ∈ ℤ 𝐴 < 𝑧)
5 zre 12643 . . . . . . 7 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
6 ltle 11378 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 < 𝑧𝐴𝑧))
75, 6sylan2 592 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝐴 < 𝑧𝐴𝑧))
87reximdva 3174 . . . . 5 (𝐴 ∈ ℝ → (∃𝑧 ∈ ℤ 𝐴 < 𝑧 → ∃𝑧 ∈ ℤ 𝐴𝑧))
94, 8mpd 15 . . . 4 (𝐴 ∈ ℝ → ∃𝑧 ∈ ℤ 𝐴𝑧)
10 rabn0 4412 . . . 4 ({𝑧 ∈ ℤ ∣ 𝐴𝑧} ≠ ∅ ↔ ∃𝑧 ∈ ℤ 𝐴𝑧)
119, 10sylibr 234 . . 3 (𝐴 ∈ ℝ → {𝑧 ∈ ℤ ∣ 𝐴𝑧} ≠ ∅)
12 breq2 5170 . . . . . 6 (𝑧 = 𝑛 → (𝐴𝑧𝐴𝑛))
1312cbvrabv 3454 . . . . 5 {𝑧 ∈ ℤ ∣ 𝐴𝑧} = {𝑛 ∈ ℤ ∣ 𝐴𝑛}
1413eqimssi 4069 . . . 4 {𝑧 ∈ ℤ ∣ 𝐴𝑧} ⊆ {𝑛 ∈ ℤ ∣ 𝐴𝑛}
15 uzwo3 13008 . . . 4 ((𝐴 ∈ ℝ ∧ ({𝑧 ∈ ℤ ∣ 𝐴𝑧} ⊆ {𝑛 ∈ ℤ ∣ 𝐴𝑛} ∧ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ≠ ∅)) → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦)
1614, 15mpanr1 702 . . 3 ((𝐴 ∈ ℝ ∧ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ≠ ∅) → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦)
1711, 16mpdan 686 . 2 (𝐴 ∈ ℝ → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦)
18 breq2 5170 . . . . . . 7 (𝑧 = 𝑥 → (𝐴𝑧𝐴𝑥))
1918elrab 3708 . . . . . 6 (𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ↔ (𝑥 ∈ ℤ ∧ 𝐴𝑥))
20 breq2 5170 . . . . . . 7 (𝑧 = 𝑦 → (𝐴𝑧𝐴𝑦))
2120ralrab 3715 . . . . . 6 (∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦 ↔ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))
2219, 21anbi12i 627 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦) ↔ ((𝑥 ∈ ℤ ∧ 𝐴𝑥) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
23 anass 468 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝐴𝑥) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) ↔ (𝑥 ∈ ℤ ∧ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))))
2422, 23bitri 275 . . . 4 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦) ↔ (𝑥 ∈ ℤ ∧ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))))
2524eubii 2588 . . 3 (∃!𝑥(𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))))
26 df-reu 3389 . . 3 (∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦 ↔ ∃!𝑥(𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦))
27 df-reu 3389 . . 3 (∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))))
2825, 26, 273bitr4i 303 . 2 (∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦 ↔ ∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
2917, 28sylib 218 1 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  ∃!weu 2571  wne 2946  wral 3067  wrex 3076  ∃!wreu 3386  {crab 3443  wss 3976  c0 4352   class class class wbr 5166  cr 11183   < clt 11324  cle 11325  cn 12293  cz 12639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904
This theorem is referenced by:  zmax  13010  zbtwnre  13011
  Copyright terms: Public domain W3C validator