| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zmin | Structured version Visualization version GIF version | ||
| Description: There is a unique smallest integer greater than or equal to a given real number. (Contributed by NM, 12-Nov-2004.) (Revised by Mario Carneiro, 13-Jun-2014.) |
| Ref | Expression |
|---|---|
| zmin | ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssz 12490 | . . . . . 6 ⊢ ℕ ⊆ ℤ | |
| 2 | arch 12378 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ∃𝑧 ∈ ℕ 𝐴 < 𝑧) | |
| 3 | ssrexv 3999 | . . . . . 6 ⊢ (ℕ ⊆ ℤ → (∃𝑧 ∈ ℕ 𝐴 < 𝑧 → ∃𝑧 ∈ ℤ 𝐴 < 𝑧)) | |
| 4 | 1, 2, 3 | mpsyl 68 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ∃𝑧 ∈ ℤ 𝐴 < 𝑧) |
| 5 | zre 12472 | . . . . . . 7 ⊢ (𝑧 ∈ ℤ → 𝑧 ∈ ℝ) | |
| 6 | ltle 11201 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 < 𝑧 → 𝐴 ≤ 𝑧)) | |
| 7 | 5, 6 | sylan2 593 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝐴 < 𝑧 → 𝐴 ≤ 𝑧)) |
| 8 | 7 | reximdva 3145 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (∃𝑧 ∈ ℤ 𝐴 < 𝑧 → ∃𝑧 ∈ ℤ 𝐴 ≤ 𝑧)) |
| 9 | 4, 8 | mpd 15 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∃𝑧 ∈ ℤ 𝐴 ≤ 𝑧) |
| 10 | rabn0 4336 | . . . 4 ⊢ ({𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ≠ ∅ ↔ ∃𝑧 ∈ ℤ 𝐴 ≤ 𝑧) | |
| 11 | 9, 10 | sylibr 234 | . . 3 ⊢ (𝐴 ∈ ℝ → {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ≠ ∅) |
| 12 | breq2 5093 | . . . . . 6 ⊢ (𝑧 = 𝑛 → (𝐴 ≤ 𝑧 ↔ 𝐴 ≤ 𝑛)) | |
| 13 | 12 | cbvrabv 3405 | . . . . 5 ⊢ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} = {𝑛 ∈ ℤ ∣ 𝐴 ≤ 𝑛} |
| 14 | 13 | eqimssi 3990 | . . . 4 ⊢ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ⊆ {𝑛 ∈ ℤ ∣ 𝐴 ≤ 𝑛} |
| 15 | uzwo3 12841 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ ({𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ⊆ {𝑛 ∈ ℤ ∣ 𝐴 ≤ 𝑛} ∧ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ≠ ∅)) → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) | |
| 16 | 14, 15 | mpanr1 703 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ≠ ∅) → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) |
| 17 | 11, 16 | mpdan 687 | . 2 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) |
| 18 | breq2 5093 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝐴 ≤ 𝑧 ↔ 𝐴 ≤ 𝑥)) | |
| 19 | 18 | elrab 3642 | . . . . . 6 ⊢ (𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ↔ (𝑥 ∈ ℤ ∧ 𝐴 ≤ 𝑥)) |
| 20 | breq2 5093 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝐴 ≤ 𝑧 ↔ 𝐴 ≤ 𝑦)) | |
| 21 | 20 | ralrab 3648 | . . . . . 6 ⊢ (∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)) |
| 22 | 19, 21 | anbi12i 628 | . . . . 5 ⊢ ((𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) ↔ ((𝑥 ∈ ℤ ∧ 𝐴 ≤ 𝑥) ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦))) |
| 23 | anass 468 | . . . . 5 ⊢ (((𝑥 ∈ ℤ ∧ 𝐴 ≤ 𝑥) ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)) ↔ (𝑥 ∈ ℤ ∧ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)))) | |
| 24 | 22, 23 | bitri 275 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) ↔ (𝑥 ∈ ℤ ∧ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)))) |
| 25 | 24 | eubii 2580 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)))) |
| 26 | df-reu 3347 | . . 3 ⊢ (∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦 ↔ ∃!𝑥(𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦)) | |
| 27 | df-reu 3347 | . . 3 ⊢ (∃!𝑥 ∈ ℤ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)))) | |
| 28 | 25, 26, 27 | 3bitr4i 303 | . 2 ⊢ (∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦 ↔ ∃!𝑥 ∈ ℤ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦))) |
| 29 | 17, 28 | sylib 218 | 1 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∃!weu 2563 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ∃!wreu 3344 {crab 3395 ⊆ wss 3897 ∅c0 4280 class class class wbr 5089 ℝcr 11005 < clt 11146 ≤ cle 11147 ℕcn 12125 ℤcz 12468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 |
| This theorem is referenced by: zmax 12843 zbtwnre 12844 |
| Copyright terms: Public domain | W3C validator |