| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zmin | Structured version Visualization version GIF version | ||
| Description: There is a unique smallest integer greater than or equal to a given real number. (Contributed by NM, 12-Nov-2004.) (Revised by Mario Carneiro, 13-Jun-2014.) |
| Ref | Expression |
|---|---|
| zmin | ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssz 12615 | . . . . . 6 ⊢ ℕ ⊆ ℤ | |
| 2 | arch 12503 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ∃𝑧 ∈ ℕ 𝐴 < 𝑧) | |
| 3 | ssrexv 4033 | . . . . . 6 ⊢ (ℕ ⊆ ℤ → (∃𝑧 ∈ ℕ 𝐴 < 𝑧 → ∃𝑧 ∈ ℤ 𝐴 < 𝑧)) | |
| 4 | 1, 2, 3 | mpsyl 68 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ∃𝑧 ∈ ℤ 𝐴 < 𝑧) |
| 5 | zre 12597 | . . . . . . 7 ⊢ (𝑧 ∈ ℤ → 𝑧 ∈ ℝ) | |
| 6 | ltle 11328 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 < 𝑧 → 𝐴 ≤ 𝑧)) | |
| 7 | 5, 6 | sylan2 593 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝐴 < 𝑧 → 𝐴 ≤ 𝑧)) |
| 8 | 7 | reximdva 3154 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (∃𝑧 ∈ ℤ 𝐴 < 𝑧 → ∃𝑧 ∈ ℤ 𝐴 ≤ 𝑧)) |
| 9 | 4, 8 | mpd 15 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∃𝑧 ∈ ℤ 𝐴 ≤ 𝑧) |
| 10 | rabn0 4369 | . . . 4 ⊢ ({𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ≠ ∅ ↔ ∃𝑧 ∈ ℤ 𝐴 ≤ 𝑧) | |
| 11 | 9, 10 | sylibr 234 | . . 3 ⊢ (𝐴 ∈ ℝ → {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ≠ ∅) |
| 12 | breq2 5128 | . . . . . 6 ⊢ (𝑧 = 𝑛 → (𝐴 ≤ 𝑧 ↔ 𝐴 ≤ 𝑛)) | |
| 13 | 12 | cbvrabv 3431 | . . . . 5 ⊢ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} = {𝑛 ∈ ℤ ∣ 𝐴 ≤ 𝑛} |
| 14 | 13 | eqimssi 4024 | . . . 4 ⊢ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ⊆ {𝑛 ∈ ℤ ∣ 𝐴 ≤ 𝑛} |
| 15 | uzwo3 12964 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ ({𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ⊆ {𝑛 ∈ ℤ ∣ 𝐴 ≤ 𝑛} ∧ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ≠ ∅)) → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) | |
| 16 | 14, 15 | mpanr1 703 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ≠ ∅) → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) |
| 17 | 11, 16 | mpdan 687 | . 2 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) |
| 18 | breq2 5128 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝐴 ≤ 𝑧 ↔ 𝐴 ≤ 𝑥)) | |
| 19 | 18 | elrab 3676 | . . . . . 6 ⊢ (𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ↔ (𝑥 ∈ ℤ ∧ 𝐴 ≤ 𝑥)) |
| 20 | breq2 5128 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝐴 ≤ 𝑧 ↔ 𝐴 ≤ 𝑦)) | |
| 21 | 20 | ralrab 3682 | . . . . . 6 ⊢ (∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)) |
| 22 | 19, 21 | anbi12i 628 | . . . . 5 ⊢ ((𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) ↔ ((𝑥 ∈ ℤ ∧ 𝐴 ≤ 𝑥) ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦))) |
| 23 | anass 468 | . . . . 5 ⊢ (((𝑥 ∈ ℤ ∧ 𝐴 ≤ 𝑥) ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)) ↔ (𝑥 ∈ ℤ ∧ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)))) | |
| 24 | 22, 23 | bitri 275 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) ↔ (𝑥 ∈ ℤ ∧ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)))) |
| 25 | 24 | eubii 2585 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)))) |
| 26 | df-reu 3365 | . . 3 ⊢ (∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦 ↔ ∃!𝑥(𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦)) | |
| 27 | df-reu 3365 | . . 3 ⊢ (∃!𝑥 ∈ ℤ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)))) | |
| 28 | 25, 26, 27 | 3bitr4i 303 | . 2 ⊢ (∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦 ↔ ∃!𝑥 ∈ ℤ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦))) |
| 29 | 17, 28 | sylib 218 | 1 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃!weu 2568 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 ∃!wreu 3362 {crab 3420 ⊆ wss 3931 ∅c0 4313 class class class wbr 5124 ℝcr 11133 < clt 11274 ≤ cle 11275 ℕcn 12245 ℤcz 12593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 |
| This theorem is referenced by: zmax 12966 zbtwnre 12967 |
| Copyright terms: Public domain | W3C validator |