![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zmin | Structured version Visualization version GIF version |
Description: There is a unique smallest integer greater than or equal to a given real number. (Contributed by NM, 12-Nov-2004.) (Revised by Mario Carneiro, 13-Jun-2014.) |
Ref | Expression |
---|---|
zmin | ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssz 12587 | . . . . . 6 ⊢ ℕ ⊆ ℤ | |
2 | arch 12476 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ∃𝑧 ∈ ℕ 𝐴 < 𝑧) | |
3 | ssrexv 4051 | . . . . . 6 ⊢ (ℕ ⊆ ℤ → (∃𝑧 ∈ ℕ 𝐴 < 𝑧 → ∃𝑧 ∈ ℤ 𝐴 < 𝑧)) | |
4 | 1, 2, 3 | mpsyl 68 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ∃𝑧 ∈ ℤ 𝐴 < 𝑧) |
5 | zre 12569 | . . . . . . 7 ⊢ (𝑧 ∈ ℤ → 𝑧 ∈ ℝ) | |
6 | ltle 11309 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 < 𝑧 → 𝐴 ≤ 𝑧)) | |
7 | 5, 6 | sylan2 592 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝐴 < 𝑧 → 𝐴 ≤ 𝑧)) |
8 | 7 | reximdva 3167 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (∃𝑧 ∈ ℤ 𝐴 < 𝑧 → ∃𝑧 ∈ ℤ 𝐴 ≤ 𝑧)) |
9 | 4, 8 | mpd 15 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∃𝑧 ∈ ℤ 𝐴 ≤ 𝑧) |
10 | rabn0 4385 | . . . 4 ⊢ ({𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ≠ ∅ ↔ ∃𝑧 ∈ ℤ 𝐴 ≤ 𝑧) | |
11 | 9, 10 | sylibr 233 | . . 3 ⊢ (𝐴 ∈ ℝ → {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ≠ ∅) |
12 | breq2 5152 | . . . . . 6 ⊢ (𝑧 = 𝑛 → (𝐴 ≤ 𝑧 ↔ 𝐴 ≤ 𝑛)) | |
13 | 12 | cbvrabv 3441 | . . . . 5 ⊢ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} = {𝑛 ∈ ℤ ∣ 𝐴 ≤ 𝑛} |
14 | 13 | eqimssi 4042 | . . . 4 ⊢ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ⊆ {𝑛 ∈ ℤ ∣ 𝐴 ≤ 𝑛} |
15 | uzwo3 12934 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ ({𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ⊆ {𝑛 ∈ ℤ ∣ 𝐴 ≤ 𝑛} ∧ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ≠ ∅)) → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) | |
16 | 14, 15 | mpanr1 700 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ≠ ∅) → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) |
17 | 11, 16 | mpdan 684 | . 2 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) |
18 | breq2 5152 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝐴 ≤ 𝑧 ↔ 𝐴 ≤ 𝑥)) | |
19 | 18 | elrab 3683 | . . . . . 6 ⊢ (𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ↔ (𝑥 ∈ ℤ ∧ 𝐴 ≤ 𝑥)) |
20 | breq2 5152 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝐴 ≤ 𝑧 ↔ 𝐴 ≤ 𝑦)) | |
21 | 20 | ralrab 3689 | . . . . . 6 ⊢ (∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)) |
22 | 19, 21 | anbi12i 626 | . . . . 5 ⊢ ((𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) ↔ ((𝑥 ∈ ℤ ∧ 𝐴 ≤ 𝑥) ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦))) |
23 | anass 468 | . . . . 5 ⊢ (((𝑥 ∈ ℤ ∧ 𝐴 ≤ 𝑥) ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)) ↔ (𝑥 ∈ ℤ ∧ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)))) | |
24 | 22, 23 | bitri 275 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) ↔ (𝑥 ∈ ℤ ∧ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)))) |
25 | 24 | eubii 2578 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)))) |
26 | df-reu 3376 | . . 3 ⊢ (∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦 ↔ ∃!𝑥(𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦)) | |
27 | df-reu 3376 | . . 3 ⊢ (∃!𝑥 ∈ ℤ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)))) | |
28 | 25, 26, 27 | 3bitr4i 303 | . 2 ⊢ (∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦 ↔ ∃!𝑥 ∈ ℤ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦))) |
29 | 17, 28 | sylib 217 | 1 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ∃!weu 2561 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 ∃!wreu 3373 {crab 3431 ⊆ wss 3948 ∅c0 4322 class class class wbr 5148 ℝcr 11115 < clt 11255 ≤ cle 11256 ℕcn 12219 ℤcz 12565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-n0 12480 df-z 12566 df-uz 12830 |
This theorem is referenced by: zmax 12936 zbtwnre 12937 |
Copyright terms: Public domain | W3C validator |