| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zmin | Structured version Visualization version GIF version | ||
| Description: There is a unique smallest integer greater than or equal to a given real number. (Contributed by NM, 12-Nov-2004.) (Revised by Mario Carneiro, 13-Jun-2014.) |
| Ref | Expression |
|---|---|
| zmin | ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssz 12527 | . . . . . 6 ⊢ ℕ ⊆ ℤ | |
| 2 | arch 12415 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ∃𝑧 ∈ ℕ 𝐴 < 𝑧) | |
| 3 | ssrexv 4013 | . . . . . 6 ⊢ (ℕ ⊆ ℤ → (∃𝑧 ∈ ℕ 𝐴 < 𝑧 → ∃𝑧 ∈ ℤ 𝐴 < 𝑧)) | |
| 4 | 1, 2, 3 | mpsyl 68 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ∃𝑧 ∈ ℤ 𝐴 < 𝑧) |
| 5 | zre 12509 | . . . . . . 7 ⊢ (𝑧 ∈ ℤ → 𝑧 ∈ ℝ) | |
| 6 | ltle 11238 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 < 𝑧 → 𝐴 ≤ 𝑧)) | |
| 7 | 5, 6 | sylan2 593 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝐴 < 𝑧 → 𝐴 ≤ 𝑧)) |
| 8 | 7 | reximdva 3146 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (∃𝑧 ∈ ℤ 𝐴 < 𝑧 → ∃𝑧 ∈ ℤ 𝐴 ≤ 𝑧)) |
| 9 | 4, 8 | mpd 15 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∃𝑧 ∈ ℤ 𝐴 ≤ 𝑧) |
| 10 | rabn0 4348 | . . . 4 ⊢ ({𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ≠ ∅ ↔ ∃𝑧 ∈ ℤ 𝐴 ≤ 𝑧) | |
| 11 | 9, 10 | sylibr 234 | . . 3 ⊢ (𝐴 ∈ ℝ → {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ≠ ∅) |
| 12 | breq2 5106 | . . . . . 6 ⊢ (𝑧 = 𝑛 → (𝐴 ≤ 𝑧 ↔ 𝐴 ≤ 𝑛)) | |
| 13 | 12 | cbvrabv 3413 | . . . . 5 ⊢ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} = {𝑛 ∈ ℤ ∣ 𝐴 ≤ 𝑛} |
| 14 | 13 | eqimssi 4004 | . . . 4 ⊢ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ⊆ {𝑛 ∈ ℤ ∣ 𝐴 ≤ 𝑛} |
| 15 | uzwo3 12878 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ ({𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ⊆ {𝑛 ∈ ℤ ∣ 𝐴 ≤ 𝑛} ∧ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ≠ ∅)) → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) | |
| 16 | 14, 15 | mpanr1 703 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ≠ ∅) → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) |
| 17 | 11, 16 | mpdan 687 | . 2 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) |
| 18 | breq2 5106 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝐴 ≤ 𝑧 ↔ 𝐴 ≤ 𝑥)) | |
| 19 | 18 | elrab 3656 | . . . . . 6 ⊢ (𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ↔ (𝑥 ∈ ℤ ∧ 𝐴 ≤ 𝑥)) |
| 20 | breq2 5106 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝐴 ≤ 𝑧 ↔ 𝐴 ≤ 𝑦)) | |
| 21 | 20 | ralrab 3662 | . . . . . 6 ⊢ (∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)) |
| 22 | 19, 21 | anbi12i 628 | . . . . 5 ⊢ ((𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) ↔ ((𝑥 ∈ ℤ ∧ 𝐴 ≤ 𝑥) ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦))) |
| 23 | anass 468 | . . . . 5 ⊢ (((𝑥 ∈ ℤ ∧ 𝐴 ≤ 𝑥) ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)) ↔ (𝑥 ∈ ℤ ∧ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)))) | |
| 24 | 22, 23 | bitri 275 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) ↔ (𝑥 ∈ ℤ ∧ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)))) |
| 25 | 24 | eubii 2578 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)))) |
| 26 | df-reu 3352 | . . 3 ⊢ (∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦 ↔ ∃!𝑥(𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦)) | |
| 27 | df-reu 3352 | . . 3 ⊢ (∃!𝑥 ∈ ℤ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦)))) | |
| 28 | 25, 26, 27 | 3bitr4i 303 | . 2 ⊢ (∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧}𝑥 ≤ 𝑦 ↔ ∃!𝑥 ∈ ℤ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦))) |
| 29 | 17, 28 | sylib 218 | 1 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃!weu 2561 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∃!wreu 3349 {crab 3402 ⊆ wss 3911 ∅c0 4292 class class class wbr 5102 ℝcr 11043 < clt 11184 ≤ cle 11185 ℕcn 12162 ℤcz 12505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 |
| This theorem is referenced by: zmax 12880 zbtwnre 12881 |
| Copyright terms: Public domain | W3C validator |