MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zmin Structured version   Visualization version   GIF version

Theorem zmin 12903
Description: There is a unique smallest integer greater than or equal to a given real number. (Contributed by NM, 12-Nov-2004.) (Revised by Mario Carneiro, 13-Jun-2014.)
Assertion
Ref Expression
zmin (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem zmin
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnssz 12551 . . . . . 6 ℕ ⊆ ℤ
2 arch 12439 . . . . . 6 (𝐴 ∈ ℝ → ∃𝑧 ∈ ℕ 𝐴 < 𝑧)
3 ssrexv 4016 . . . . . 6 (ℕ ⊆ ℤ → (∃𝑧 ∈ ℕ 𝐴 < 𝑧 → ∃𝑧 ∈ ℤ 𝐴 < 𝑧))
41, 2, 3mpsyl 68 . . . . 5 (𝐴 ∈ ℝ → ∃𝑧 ∈ ℤ 𝐴 < 𝑧)
5 zre 12533 . . . . . . 7 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
6 ltle 11262 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 < 𝑧𝐴𝑧))
75, 6sylan2 593 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝐴 < 𝑧𝐴𝑧))
87reximdva 3146 . . . . 5 (𝐴 ∈ ℝ → (∃𝑧 ∈ ℤ 𝐴 < 𝑧 → ∃𝑧 ∈ ℤ 𝐴𝑧))
94, 8mpd 15 . . . 4 (𝐴 ∈ ℝ → ∃𝑧 ∈ ℤ 𝐴𝑧)
10 rabn0 4352 . . . 4 ({𝑧 ∈ ℤ ∣ 𝐴𝑧} ≠ ∅ ↔ ∃𝑧 ∈ ℤ 𝐴𝑧)
119, 10sylibr 234 . . 3 (𝐴 ∈ ℝ → {𝑧 ∈ ℤ ∣ 𝐴𝑧} ≠ ∅)
12 breq2 5111 . . . . . 6 (𝑧 = 𝑛 → (𝐴𝑧𝐴𝑛))
1312cbvrabv 3416 . . . . 5 {𝑧 ∈ ℤ ∣ 𝐴𝑧} = {𝑛 ∈ ℤ ∣ 𝐴𝑛}
1413eqimssi 4007 . . . 4 {𝑧 ∈ ℤ ∣ 𝐴𝑧} ⊆ {𝑛 ∈ ℤ ∣ 𝐴𝑛}
15 uzwo3 12902 . . . 4 ((𝐴 ∈ ℝ ∧ ({𝑧 ∈ ℤ ∣ 𝐴𝑧} ⊆ {𝑛 ∈ ℤ ∣ 𝐴𝑛} ∧ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ≠ ∅)) → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦)
1614, 15mpanr1 703 . . 3 ((𝐴 ∈ ℝ ∧ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ≠ ∅) → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦)
1711, 16mpdan 687 . 2 (𝐴 ∈ ℝ → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦)
18 breq2 5111 . . . . . . 7 (𝑧 = 𝑥 → (𝐴𝑧𝐴𝑥))
1918elrab 3659 . . . . . 6 (𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ↔ (𝑥 ∈ ℤ ∧ 𝐴𝑥))
20 breq2 5111 . . . . . . 7 (𝑧 = 𝑦 → (𝐴𝑧𝐴𝑦))
2120ralrab 3665 . . . . . 6 (∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦 ↔ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))
2219, 21anbi12i 628 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦) ↔ ((𝑥 ∈ ℤ ∧ 𝐴𝑥) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
23 anass 468 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝐴𝑥) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) ↔ (𝑥 ∈ ℤ ∧ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))))
2422, 23bitri 275 . . . 4 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦) ↔ (𝑥 ∈ ℤ ∧ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))))
2524eubii 2578 . . 3 (∃!𝑥(𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))))
26 df-reu 3355 . . 3 (∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦 ↔ ∃!𝑥(𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦))
27 df-reu 3355 . . 3 (∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))))
2825, 26, 273bitr4i 303 . 2 (∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦 ↔ ∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
2917, 28sylib 218 1 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  ∃!weu 2561  wne 2925  wral 3044  wrex 3053  ∃!wreu 3352  {crab 3405  wss 3914  c0 4296   class class class wbr 5107  cr 11067   < clt 11208  cle 11209  cn 12186  cz 12529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794
This theorem is referenced by:  zmax  12904  zbtwnre  12905
  Copyright terms: Public domain W3C validator