MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zmin Structured version   Visualization version   GIF version

Theorem zmin 12332
Description: There is a unique smallest integer greater than or equal to a given real number. (Contributed by NM, 12-Nov-2004.) (Revised by Mario Carneiro, 13-Jun-2014.)
Assertion
Ref Expression
zmin (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem zmin
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnssz 11990 . . . . . 6 ℕ ⊆ ℤ
2 arch 11882 . . . . . 6 (𝐴 ∈ ℝ → ∃𝑧 ∈ ℕ 𝐴 < 𝑧)
3 ssrexv 4031 . . . . . 6 (ℕ ⊆ ℤ → (∃𝑧 ∈ ℕ 𝐴 < 𝑧 → ∃𝑧 ∈ ℤ 𝐴 < 𝑧))
41, 2, 3mpsyl 68 . . . . 5 (𝐴 ∈ ℝ → ∃𝑧 ∈ ℤ 𝐴 < 𝑧)
5 zre 11973 . . . . . . 7 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
6 ltle 10717 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 < 𝑧𝐴𝑧))
75, 6sylan2 592 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝐴 < 𝑧𝐴𝑧))
87reximdva 3271 . . . . 5 (𝐴 ∈ ℝ → (∃𝑧 ∈ ℤ 𝐴 < 𝑧 → ∃𝑧 ∈ ℤ 𝐴𝑧))
94, 8mpd 15 . . . 4 (𝐴 ∈ ℝ → ∃𝑧 ∈ ℤ 𝐴𝑧)
10 rabn0 4336 . . . 4 ({𝑧 ∈ ℤ ∣ 𝐴𝑧} ≠ ∅ ↔ ∃𝑧 ∈ ℤ 𝐴𝑧)
119, 10sylibr 235 . . 3 (𝐴 ∈ ℝ → {𝑧 ∈ ℤ ∣ 𝐴𝑧} ≠ ∅)
12 breq2 5061 . . . . . 6 (𝑧 = 𝑛 → (𝐴𝑧𝐴𝑛))
1312cbvrabv 3489 . . . . 5 {𝑧 ∈ ℤ ∣ 𝐴𝑧} = {𝑛 ∈ ℤ ∣ 𝐴𝑛}
1413eqimssi 4022 . . . 4 {𝑧 ∈ ℤ ∣ 𝐴𝑧} ⊆ {𝑛 ∈ ℤ ∣ 𝐴𝑛}
15 uzwo3 12331 . . . 4 ((𝐴 ∈ ℝ ∧ ({𝑧 ∈ ℤ ∣ 𝐴𝑧} ⊆ {𝑛 ∈ ℤ ∣ 𝐴𝑛} ∧ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ≠ ∅)) → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦)
1614, 15mpanr1 699 . . 3 ((𝐴 ∈ ℝ ∧ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ≠ ∅) → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦)
1711, 16mpdan 683 . 2 (𝐴 ∈ ℝ → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦)
18 breq2 5061 . . . . . . 7 (𝑧 = 𝑥 → (𝐴𝑧𝐴𝑥))
1918elrab 3677 . . . . . 6 (𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ↔ (𝑥 ∈ ℤ ∧ 𝐴𝑥))
20 breq2 5061 . . . . . . 7 (𝑧 = 𝑦 → (𝐴𝑧𝐴𝑦))
2120ralrab 3682 . . . . . 6 (∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦 ↔ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))
2219, 21anbi12i 626 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦) ↔ ((𝑥 ∈ ℤ ∧ 𝐴𝑥) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
23 anass 469 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝐴𝑥) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) ↔ (𝑥 ∈ ℤ ∧ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))))
2422, 23bitri 276 . . . 4 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦) ↔ (𝑥 ∈ ℤ ∧ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))))
2524eubii 2663 . . 3 (∃!𝑥(𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))))
26 df-reu 3142 . . 3 (∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦 ↔ ∃!𝑥(𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦))
27 df-reu 3142 . . 3 (∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))))
2825, 26, 273bitr4i 304 . 2 (∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦 ↔ ∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
2917, 28sylib 219 1 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2105  ∃!weu 2646  wne 3013  wral 3135  wrex 3136  ∃!wreu 3137  {crab 3139  wss 3933  c0 4288   class class class wbr 5057  cr 10524   < clt 10663  cle 10664  cn 11626  cz 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232
This theorem is referenced by:  zmax  12333  zbtwnre  12334
  Copyright terms: Public domain W3C validator