![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ge0gtmnf | Structured version Visualization version GIF version |
Description: A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
ge0gtmnf | ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → -∞ < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnflt0 13164 | . 2 ⊢ -∞ < 0 | |
2 | mnfxr 11315 | . . . 4 ⊢ -∞ ∈ ℝ* | |
3 | 0xr 11305 | . . . 4 ⊢ 0 ∈ ℝ* | |
4 | xrltletr 13195 | . . . 4 ⊢ ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ 𝐴) → -∞ < 𝐴)) | |
5 | 2, 3, 4 | mp3an12 1450 | . . 3 ⊢ (𝐴 ∈ ℝ* → ((-∞ < 0 ∧ 0 ≤ 𝐴) → -∞ < 𝐴)) |
6 | 5 | imp 406 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ (-∞ < 0 ∧ 0 ≤ 𝐴)) → -∞ < 𝐴) |
7 | 1, 6 | mpanr1 703 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → -∞ < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 class class class wbr 5147 0cc0 11152 -∞cmnf 11290 ℝ*cxr 11291 < clt 11292 ≤ cle 11293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-addrcl 11213 ax-rnegex 11223 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 |
This theorem is referenced by: ge0nemnf 13211 xrrege0 13212 pcgcd1 16910 pnfnei 23243 isnghm3 24761 ovolunnul 25548 radcnvle 26477 psercnlem1 26483 |
Copyright terms: Public domain | W3C validator |