MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ge0gtmnf Structured version   Visualization version   GIF version

Theorem ge0gtmnf 13156
Description: A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
ge0gtmnf ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → -∞ < 𝐴)

Proof of Theorem ge0gtmnf
StepHypRef Expression
1 mnflt0 13110 . 2 -∞ < 0
2 mnfxr 11276 . . . 4 -∞ ∈ ℝ*
3 0xr 11266 . . . 4 0 ∈ ℝ*
4 xrltletr 13141 . . . 4 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝐴 ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ 𝐴) → -∞ < 𝐴))
52, 3, 4mp3an12 1450 . . 3 (𝐴 ∈ ℝ* → ((-∞ < 0 ∧ 0 ≤ 𝐴) → -∞ < 𝐴))
65imp 406 . 2 ((𝐴 ∈ ℝ* ∧ (-∞ < 0 ∧ 0 ≤ 𝐴)) → -∞ < 𝐴)
71, 6mpanr1 700 1 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → -∞ < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105   class class class wbr 5148  0cc0 11114  -∞cmnf 11251  *cxr 11252   < clt 11253  cle 11254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-addrcl 11175  ax-rnegex 11185  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259
This theorem is referenced by:  ge0nemnf  13157  xrrege0  13158  pcgcd1  16815  pnfnei  22945  isnghm3  24463  ovolunnul  25250  radcnvle  26169  psercnlem1  26174
  Copyright terms: Public domain W3C validator