MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omcl Structured version   Visualization version   GIF version

Theorem omcl 8461
Description: Closure law for ordinal multiplication. Proposition 8.16 of [TakeutiZaring] p. 57. Remark 2.8 of [Schloeder] p. 5. (Contributed by NM, 3-Aug-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
omcl ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)

Proof of Theorem omcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7361 . . . 4 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
21eleq1d 2813 . . 3 (𝑥 = ∅ → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o ∅) ∈ On))
3 oveq2 7361 . . . 4 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
43eleq1d 2813 . . 3 (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o 𝑦) ∈ On))
5 oveq2 7361 . . . 4 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
65eleq1d 2813 . . 3 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o suc 𝑦) ∈ On))
7 oveq2 7361 . . . 4 (𝑥 = 𝐵 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐵))
87eleq1d 2813 . . 3 (𝑥 = 𝐵 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o 𝐵) ∈ On))
9 om0 8442 . . . 4 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
10 0elon 6366 . . . 4 ∅ ∈ On
119, 10eqeltrdi 2836 . . 3 (𝐴 ∈ On → (𝐴 ·o ∅) ∈ On)
12 oacl 8460 . . . . . . 7 (((𝐴 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On)
1312expcom 413 . . . . . 6 (𝐴 ∈ On → ((𝐴 ·o 𝑦) ∈ On → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On))
1413adantr 480 . . . . 5 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝑦) ∈ On → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On))
15 omsuc 8451 . . . . . 6 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
1615eleq1d 2813 . . . . 5 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o suc 𝑦) ∈ On ↔ ((𝐴 ·o 𝑦) +o 𝐴) ∈ On))
1714, 16sylibrd 259 . . . 4 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝑦) ∈ On → (𝐴 ·o suc 𝑦) ∈ On))
1817expcom 413 . . 3 (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴 ·o 𝑦) ∈ On → (𝐴 ·o suc 𝑦) ∈ On)))
19 vex 3442 . . . . . 6 𝑥 ∈ V
20 iunon 8269 . . . . . 6 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐴 ·o 𝑦) ∈ On) → 𝑦𝑥 (𝐴 ·o 𝑦) ∈ On)
2119, 20mpan 690 . . . . 5 (∀𝑦𝑥 (𝐴 ·o 𝑦) ∈ On → 𝑦𝑥 (𝐴 ·o 𝑦) ∈ On)
22 omlim 8458 . . . . . . 7 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ·o 𝑥) = 𝑦𝑥 (𝐴 ·o 𝑦))
2319, 22mpanr1 703 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝑥) → (𝐴 ·o 𝑥) = 𝑦𝑥 (𝐴 ·o 𝑦))
2423eleq1d 2813 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝑥) → ((𝐴 ·o 𝑥) ∈ On ↔ 𝑦𝑥 (𝐴 ·o 𝑦) ∈ On))
2521, 24imbitrrid 246 . . . 4 ((𝐴 ∈ On ∧ Lim 𝑥) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ∈ On → (𝐴 ·o 𝑥) ∈ On))
2625expcom 413 . . 3 (Lim 𝑥 → (𝐴 ∈ On → (∀𝑦𝑥 (𝐴 ·o 𝑦) ∈ On → (𝐴 ·o 𝑥) ∈ On)))
272, 4, 6, 8, 11, 18, 26tfinds3 7805 . 2 (𝐵 ∈ On → (𝐴 ∈ On → (𝐴 ·o 𝐵) ∈ On))
2827impcom 407 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  c0 4286   ciun 4944  Oncon0 6311  Lim wlim 6312  suc csuc 6313  (class class class)co 7353   +o coa 8392   ·o comu 8393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-oadd 8399  df-omul 8400
This theorem is referenced by:  oecl  8462  omordi  8491  omord2  8492  omcan  8494  omword  8495  omwordri  8497  om00  8500  om00el  8501  omlimcl  8503  odi  8504  omass  8505  oneo  8506  omeulem1  8507  omeulem2  8508  omopth2  8509  oeoelem  8523  oeoe  8524  oeeui  8527  oaabs2  8574  omxpenlem  9002  omxpen  9003  cantnfle  9586  cantnflt  9587  cantnflem1d  9603  cantnflem1  9604  cantnflem3  9606  cantnflem4  9607  cnfcomlem  9614  xpnum  9866  infxpenc  9931  dfac12lem2  10058  onexomgt  43217  omlimcl2  43218  onexlimgt  43219  onexoegt  43220  oaomoecl  43254  oaabsb  43270  dflim5  43305  omabs2  43308  naddwordnexlem0  43372  naddwordnexlem1  43373  naddwordnexlem3  43375  oawordex3  43376  naddwordnexlem4  43377
  Copyright terms: Public domain W3C validator