MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omcl Structured version   Visualization version   GIF version

Theorem omcl 8451
Description: Closure law for ordinal multiplication. Proposition 8.16 of [TakeutiZaring] p. 57. Remark 2.8 of [Schloeder] p. 5. (Contributed by NM, 3-Aug-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
omcl ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)

Proof of Theorem omcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7354 . . . 4 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
21eleq1d 2816 . . 3 (𝑥 = ∅ → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o ∅) ∈ On))
3 oveq2 7354 . . . 4 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
43eleq1d 2816 . . 3 (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o 𝑦) ∈ On))
5 oveq2 7354 . . . 4 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
65eleq1d 2816 . . 3 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o suc 𝑦) ∈ On))
7 oveq2 7354 . . . 4 (𝑥 = 𝐵 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐵))
87eleq1d 2816 . . 3 (𝑥 = 𝐵 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o 𝐵) ∈ On))
9 om0 8432 . . . 4 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
10 0elon 6361 . . . 4 ∅ ∈ On
119, 10eqeltrdi 2839 . . 3 (𝐴 ∈ On → (𝐴 ·o ∅) ∈ On)
12 oacl 8450 . . . . . . 7 (((𝐴 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On)
1312expcom 413 . . . . . 6 (𝐴 ∈ On → ((𝐴 ·o 𝑦) ∈ On → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On))
1413adantr 480 . . . . 5 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝑦) ∈ On → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On))
15 omsuc 8441 . . . . . 6 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
1615eleq1d 2816 . . . . 5 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o suc 𝑦) ∈ On ↔ ((𝐴 ·o 𝑦) +o 𝐴) ∈ On))
1714, 16sylibrd 259 . . . 4 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝑦) ∈ On → (𝐴 ·o suc 𝑦) ∈ On))
1817expcom 413 . . 3 (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴 ·o 𝑦) ∈ On → (𝐴 ·o suc 𝑦) ∈ On)))
19 vex 3440 . . . . . 6 𝑥 ∈ V
20 iunon 8259 . . . . . 6 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐴 ·o 𝑦) ∈ On) → 𝑦𝑥 (𝐴 ·o 𝑦) ∈ On)
2119, 20mpan 690 . . . . 5 (∀𝑦𝑥 (𝐴 ·o 𝑦) ∈ On → 𝑦𝑥 (𝐴 ·o 𝑦) ∈ On)
22 omlim 8448 . . . . . . 7 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ·o 𝑥) = 𝑦𝑥 (𝐴 ·o 𝑦))
2319, 22mpanr1 703 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝑥) → (𝐴 ·o 𝑥) = 𝑦𝑥 (𝐴 ·o 𝑦))
2423eleq1d 2816 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝑥) → ((𝐴 ·o 𝑥) ∈ On ↔ 𝑦𝑥 (𝐴 ·o 𝑦) ∈ On))
2521, 24imbitrrid 246 . . . 4 ((𝐴 ∈ On ∧ Lim 𝑥) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ∈ On → (𝐴 ·o 𝑥) ∈ On))
2625expcom 413 . . 3 (Lim 𝑥 → (𝐴 ∈ On → (∀𝑦𝑥 (𝐴 ·o 𝑦) ∈ On → (𝐴 ·o 𝑥) ∈ On)))
272, 4, 6, 8, 11, 18, 26tfinds3 7795 . 2 (𝐵 ∈ On → (𝐴 ∈ On → (𝐴 ·o 𝐵) ∈ On))
2827impcom 407 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  c0 4283   ciun 4941  Oncon0 6306  Lim wlim 6307  suc csuc 6308  (class class class)co 7346   +o coa 8382   ·o comu 8383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-oadd 8389  df-omul 8390
This theorem is referenced by:  oecl  8452  omordi  8481  omord2  8482  omcan  8484  omword  8485  omwordri  8487  om00  8490  om00el  8491  omlimcl  8493  odi  8494  omass  8495  oneo  8496  omeulem1  8497  omeulem2  8498  omopth2  8499  oeoelem  8513  oeoe  8514  oeeui  8517  oaabs2  8564  omxpenlem  8991  omxpen  8992  cantnfle  9561  cantnflt  9562  cantnflem1d  9578  cantnflem1  9579  cantnflem3  9581  cantnflem4  9582  cnfcomlem  9589  xpnum  9844  infxpenc  9909  dfac12lem2  10036  onexomgt  43280  omlimcl2  43281  onexlimgt  43282  onexoegt  43283  oaomoecl  43317  oaabsb  43333  dflim5  43368  omabs2  43371  naddwordnexlem0  43435  naddwordnexlem1  43436  naddwordnexlem3  43438  oawordex3  43439  naddwordnexlem4  43440
  Copyright terms: Public domain W3C validator