MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omcl Structured version   Visualization version   GIF version

Theorem omcl 8144
Description: Closure law for ordinal multiplication. Proposition 8.16 of [TakeutiZaring] p. 57. (Contributed by NM, 3-Aug-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
omcl ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)

Proof of Theorem omcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7143 . . . 4 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
21eleq1d 2874 . . 3 (𝑥 = ∅ → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o ∅) ∈ On))
3 oveq2 7143 . . . 4 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
43eleq1d 2874 . . 3 (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o 𝑦) ∈ On))
5 oveq2 7143 . . . 4 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
65eleq1d 2874 . . 3 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o suc 𝑦) ∈ On))
7 oveq2 7143 . . . 4 (𝑥 = 𝐵 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐵))
87eleq1d 2874 . . 3 (𝑥 = 𝐵 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o 𝐵) ∈ On))
9 om0 8125 . . . 4 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
10 0elon 6212 . . . 4 ∅ ∈ On
119, 10eqeltrdi 2898 . . 3 (𝐴 ∈ On → (𝐴 ·o ∅) ∈ On)
12 oacl 8143 . . . . . . 7 (((𝐴 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On)
1312expcom 417 . . . . . 6 (𝐴 ∈ On → ((𝐴 ·o 𝑦) ∈ On → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On))
1413adantr 484 . . . . 5 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝑦) ∈ On → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On))
15 omsuc 8134 . . . . . 6 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
1615eleq1d 2874 . . . . 5 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o suc 𝑦) ∈ On ↔ ((𝐴 ·o 𝑦) +o 𝐴) ∈ On))
1714, 16sylibrd 262 . . . 4 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝑦) ∈ On → (𝐴 ·o suc 𝑦) ∈ On))
1817expcom 417 . . 3 (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴 ·o 𝑦) ∈ On → (𝐴 ·o suc 𝑦) ∈ On)))
19 vex 3444 . . . . . 6 𝑥 ∈ V
20 iunon 7959 . . . . . 6 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐴 ·o 𝑦) ∈ On) → 𝑦𝑥 (𝐴 ·o 𝑦) ∈ On)
2119, 20mpan 689 . . . . 5 (∀𝑦𝑥 (𝐴 ·o 𝑦) ∈ On → 𝑦𝑥 (𝐴 ·o 𝑦) ∈ On)
22 omlim 8141 . . . . . . 7 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ·o 𝑥) = 𝑦𝑥 (𝐴 ·o 𝑦))
2319, 22mpanr1 702 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝑥) → (𝐴 ·o 𝑥) = 𝑦𝑥 (𝐴 ·o 𝑦))
2423eleq1d 2874 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝑥) → ((𝐴 ·o 𝑥) ∈ On ↔ 𝑦𝑥 (𝐴 ·o 𝑦) ∈ On))
2521, 24syl5ibr 249 . . . 4 ((𝐴 ∈ On ∧ Lim 𝑥) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ∈ On → (𝐴 ·o 𝑥) ∈ On))
2625expcom 417 . . 3 (Lim 𝑥 → (𝐴 ∈ On → (∀𝑦𝑥 (𝐴 ·o 𝑦) ∈ On → (𝐴 ·o 𝑥) ∈ On)))
272, 4, 6, 8, 11, 18, 26tfinds3 7559 . 2 (𝐵 ∈ On → (𝐴 ∈ On → (𝐴 ·o 𝐵) ∈ On))
2827impcom 411 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  c0 4243   ciun 4881  Oncon0 6159  Lim wlim 6160  suc csuc 6161  (class class class)co 7135   +o coa 8082   ·o comu 8083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-oadd 8089  df-omul 8090
This theorem is referenced by:  oecl  8145  omordi  8175  omord2  8176  omcan  8178  omword  8179  omwordri  8181  om00  8184  om00el  8185  omlimcl  8187  odi  8188  omass  8189  oneo  8190  omeulem1  8191  omeulem2  8192  omopth2  8193  oeoelem  8207  oeoe  8208  oeeui  8211  oaabs2  8255  omxpenlem  8601  omxpen  8602  cantnfle  9118  cantnflt  9119  cantnflem1d  9135  cantnflem1  9136  cantnflem3  9138  cantnflem4  9139  cnfcomlem  9146  xpnum  9364  infxpenc  9429  dfac12lem2  9555
  Copyright terms: Public domain W3C validator