MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omcl Structured version   Visualization version   GIF version

Theorem omcl 7900
Description: Closure law for ordinal multiplication. Proposition 8.16 of [TakeutiZaring] p. 57. (Contributed by NM, 3-Aug-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
omcl ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)

Proof of Theorem omcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6930 . . . 4 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
21eleq1d 2843 . . 3 (𝑥 = ∅ → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o ∅) ∈ On))
3 oveq2 6930 . . . 4 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
43eleq1d 2843 . . 3 (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o 𝑦) ∈ On))
5 oveq2 6930 . . . 4 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
65eleq1d 2843 . . 3 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o suc 𝑦) ∈ On))
7 oveq2 6930 . . . 4 (𝑥 = 𝐵 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐵))
87eleq1d 2843 . . 3 (𝑥 = 𝐵 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o 𝐵) ∈ On))
9 om0 7881 . . . 4 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
10 0elon 6029 . . . 4 ∅ ∈ On
119, 10syl6eqel 2866 . . 3 (𝐴 ∈ On → (𝐴 ·o ∅) ∈ On)
12 oacl 7899 . . . . . . 7 (((𝐴 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On)
1312expcom 404 . . . . . 6 (𝐴 ∈ On → ((𝐴 ·o 𝑦) ∈ On → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On))
1413adantr 474 . . . . 5 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝑦) ∈ On → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On))
15 omsuc 7890 . . . . . 6 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
1615eleq1d 2843 . . . . 5 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o suc 𝑦) ∈ On ↔ ((𝐴 ·o 𝑦) +o 𝐴) ∈ On))
1714, 16sylibrd 251 . . . 4 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝑦) ∈ On → (𝐴 ·o suc 𝑦) ∈ On))
1817expcom 404 . . 3 (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴 ·o 𝑦) ∈ On → (𝐴 ·o suc 𝑦) ∈ On)))
19 vex 3400 . . . . . 6 𝑥 ∈ V
20 iunon 7719 . . . . . 6 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐴 ·o 𝑦) ∈ On) → 𝑦𝑥 (𝐴 ·o 𝑦) ∈ On)
2119, 20mpan 680 . . . . 5 (∀𝑦𝑥 (𝐴 ·o 𝑦) ∈ On → 𝑦𝑥 (𝐴 ·o 𝑦) ∈ On)
22 omlim 7897 . . . . . . 7 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ·o 𝑥) = 𝑦𝑥 (𝐴 ·o 𝑦))
2319, 22mpanr1 693 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝑥) → (𝐴 ·o 𝑥) = 𝑦𝑥 (𝐴 ·o 𝑦))
2423eleq1d 2843 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝑥) → ((𝐴 ·o 𝑥) ∈ On ↔ 𝑦𝑥 (𝐴 ·o 𝑦) ∈ On))
2521, 24syl5ibr 238 . . . 4 ((𝐴 ∈ On ∧ Lim 𝑥) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ∈ On → (𝐴 ·o 𝑥) ∈ On))
2625expcom 404 . . 3 (Lim 𝑥 → (𝐴 ∈ On → (∀𝑦𝑥 (𝐴 ·o 𝑦) ∈ On → (𝐴 ·o 𝑥) ∈ On)))
272, 4, 6, 8, 11, 18, 26tfinds3 7342 . 2 (𝐵 ∈ On → (𝐴 ∈ On → (𝐴 ·o 𝐵) ∈ On))
2827impcom 398 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2106  wral 3089  Vcvv 3397  c0 4140   ciun 4753  Oncon0 5976  Lim wlim 5977  suc csuc 5978  (class class class)co 6922   +o coa 7840   ·o comu 7841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-oadd 7847  df-omul 7848
This theorem is referenced by:  oecl  7901  omordi  7930  omord2  7931  omcan  7933  omword  7934  omwordri  7936  om00  7939  om00el  7940  omlimcl  7942  odi  7943  omass  7944  oneo  7945  omeulem1  7946  omeulem2  7947  omopth2  7948  oeoelem  7962  oeoe  7963  oeeui  7966  oaabs2  8009  omxpenlem  8349  omxpen  8350  cantnfle  8865  cantnflt  8866  cantnflem1d  8882  cantnflem1  8883  cantnflem3  8885  cantnflem4  8886  cnfcomlem  8893  xpnum  9110  infxpenc  9174  dfac12lem2  9301
  Copyright terms: Public domain W3C validator