| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omcl | Structured version Visualization version GIF version | ||
| Description: Closure law for ordinal multiplication. Proposition 8.16 of [TakeutiZaring] p. 57. Remark 2.8 of [Schloeder] p. 5. (Contributed by NM, 3-Aug-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| omcl | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7361 | . . . 4 ⊢ (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅)) | |
| 2 | 1 | eleq1d 2813 | . . 3 ⊢ (𝑥 = ∅ → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o ∅) ∈ On)) |
| 3 | oveq2 7361 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦)) | |
| 4 | 3 | eleq1d 2813 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o 𝑦) ∈ On)) |
| 5 | oveq2 7361 | . . . 4 ⊢ (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦)) | |
| 6 | 5 | eleq1d 2813 | . . 3 ⊢ (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o suc 𝑦) ∈ On)) |
| 7 | oveq2 7361 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐵)) | |
| 8 | 7 | eleq1d 2813 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o 𝐵) ∈ On)) |
| 9 | om0 8442 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = ∅) | |
| 10 | 0elon 6366 | . . . 4 ⊢ ∅ ∈ On | |
| 11 | 9, 10 | eqeltrdi 2836 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) ∈ On) |
| 12 | oacl 8460 | . . . . . . 7 ⊢ (((𝐴 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On) | |
| 13 | 12 | expcom 413 | . . . . . 6 ⊢ (𝐴 ∈ On → ((𝐴 ·o 𝑦) ∈ On → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On)) |
| 14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝑦) ∈ On → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On)) |
| 15 | omsuc 8451 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴)) | |
| 16 | 15 | eleq1d 2813 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o suc 𝑦) ∈ On ↔ ((𝐴 ·o 𝑦) +o 𝐴) ∈ On)) |
| 17 | 14, 16 | sylibrd 259 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝑦) ∈ On → (𝐴 ·o suc 𝑦) ∈ On)) |
| 18 | 17 | expcom 413 | . . 3 ⊢ (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴 ·o 𝑦) ∈ On → (𝐴 ·o suc 𝑦) ∈ On))) |
| 19 | vex 3442 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 20 | iunon 8269 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On) → ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On) | |
| 21 | 19, 20 | mpan 690 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On → ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On) |
| 22 | omlim 8458 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ·o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦)) | |
| 23 | 19, 22 | mpanr1 703 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → (𝐴 ·o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦)) |
| 24 | 23 | eleq1d 2813 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → ((𝐴 ·o 𝑥) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On)) |
| 25 | 21, 24 | imbitrrid 246 | . . . 4 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → (∀𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On → (𝐴 ·o 𝑥) ∈ On)) |
| 26 | 25 | expcom 413 | . . 3 ⊢ (Lim 𝑥 → (𝐴 ∈ On → (∀𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On → (𝐴 ·o 𝑥) ∈ On))) |
| 27 | 2, 4, 6, 8, 11, 18, 26 | tfinds3 7805 | . 2 ⊢ (𝐵 ∈ On → (𝐴 ∈ On → (𝐴 ·o 𝐵) ∈ On)) |
| 28 | 27 | impcom 407 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ∅c0 4286 ∪ ciun 4944 Oncon0 6311 Lim wlim 6312 suc csuc 6313 (class class class)co 7353 +o coa 8392 ·o comu 8393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-oadd 8399 df-omul 8400 |
| This theorem is referenced by: oecl 8462 omordi 8491 omord2 8492 omcan 8494 omword 8495 omwordri 8497 om00 8500 om00el 8501 omlimcl 8503 odi 8504 omass 8505 oneo 8506 omeulem1 8507 omeulem2 8508 omopth2 8509 oeoelem 8523 oeoe 8524 oeeui 8527 oaabs2 8574 omxpenlem 9002 omxpen 9003 cantnfle 9586 cantnflt 9587 cantnflem1d 9603 cantnflem1 9604 cantnflem3 9606 cantnflem4 9607 cnfcomlem 9614 xpnum 9866 infxpenc 9931 dfac12lem2 10058 onexomgt 43217 omlimcl2 43218 onexlimgt 43219 onexoegt 43220 oaomoecl 43254 oaabsb 43270 dflim5 43305 omabs2 43308 naddwordnexlem0 43372 naddwordnexlem1 43373 naddwordnexlem3 43375 oawordex3 43376 naddwordnexlem4 43377 |
| Copyright terms: Public domain | W3C validator |