| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omcl | Structured version Visualization version GIF version | ||
| Description: Closure law for ordinal multiplication. Proposition 8.16 of [TakeutiZaring] p. 57. Remark 2.8 of [Schloeder] p. 5. (Contributed by NM, 3-Aug-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| omcl | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7398 | . . . 4 ⊢ (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅)) | |
| 2 | 1 | eleq1d 2814 | . . 3 ⊢ (𝑥 = ∅ → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o ∅) ∈ On)) |
| 3 | oveq2 7398 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦)) | |
| 4 | 3 | eleq1d 2814 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o 𝑦) ∈ On)) |
| 5 | oveq2 7398 | . . . 4 ⊢ (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦)) | |
| 6 | 5 | eleq1d 2814 | . . 3 ⊢ (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o suc 𝑦) ∈ On)) |
| 7 | oveq2 7398 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐵)) | |
| 8 | 7 | eleq1d 2814 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o 𝐵) ∈ On)) |
| 9 | om0 8484 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = ∅) | |
| 10 | 0elon 6390 | . . . 4 ⊢ ∅ ∈ On | |
| 11 | 9, 10 | eqeltrdi 2837 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) ∈ On) |
| 12 | oacl 8502 | . . . . . . 7 ⊢ (((𝐴 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On) | |
| 13 | 12 | expcom 413 | . . . . . 6 ⊢ (𝐴 ∈ On → ((𝐴 ·o 𝑦) ∈ On → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On)) |
| 14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝑦) ∈ On → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On)) |
| 15 | omsuc 8493 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴)) | |
| 16 | 15 | eleq1d 2814 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o suc 𝑦) ∈ On ↔ ((𝐴 ·o 𝑦) +o 𝐴) ∈ On)) |
| 17 | 14, 16 | sylibrd 259 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝑦) ∈ On → (𝐴 ·o suc 𝑦) ∈ On)) |
| 18 | 17 | expcom 413 | . . 3 ⊢ (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴 ·o 𝑦) ∈ On → (𝐴 ·o suc 𝑦) ∈ On))) |
| 19 | vex 3454 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 20 | iunon 8311 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On) → ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On) | |
| 21 | 19, 20 | mpan 690 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On → ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On) |
| 22 | omlim 8500 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ·o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦)) | |
| 23 | 19, 22 | mpanr1 703 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → (𝐴 ·o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦)) |
| 24 | 23 | eleq1d 2814 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → ((𝐴 ·o 𝑥) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On)) |
| 25 | 21, 24 | imbitrrid 246 | . . . 4 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → (∀𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On → (𝐴 ·o 𝑥) ∈ On)) |
| 26 | 25 | expcom 413 | . . 3 ⊢ (Lim 𝑥 → (𝐴 ∈ On → (∀𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On → (𝐴 ·o 𝑥) ∈ On))) |
| 27 | 2, 4, 6, 8, 11, 18, 26 | tfinds3 7844 | . 2 ⊢ (𝐵 ∈ On → (𝐴 ∈ On → (𝐴 ·o 𝐵) ∈ On)) |
| 28 | 27 | impcom 407 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ∅c0 4299 ∪ ciun 4958 Oncon0 6335 Lim wlim 6336 suc csuc 6337 (class class class)co 7390 +o coa 8434 ·o comu 8435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-oadd 8441 df-omul 8442 |
| This theorem is referenced by: oecl 8504 omordi 8533 omord2 8534 omcan 8536 omword 8537 omwordri 8539 om00 8542 om00el 8543 omlimcl 8545 odi 8546 omass 8547 oneo 8548 omeulem1 8549 omeulem2 8550 omopth2 8551 oeoelem 8565 oeoe 8566 oeeui 8569 oaabs2 8616 omxpenlem 9047 omxpen 9048 cantnfle 9631 cantnflt 9632 cantnflem1d 9648 cantnflem1 9649 cantnflem3 9651 cantnflem4 9652 cnfcomlem 9659 xpnum 9911 infxpenc 9978 dfac12lem2 10105 onexomgt 43237 omlimcl2 43238 onexlimgt 43239 onexoegt 43240 oaomoecl 43274 oaabsb 43290 dflim5 43325 omabs2 43328 naddwordnexlem0 43392 naddwordnexlem1 43393 naddwordnexlem3 43395 oawordex3 43396 naddwordnexlem4 43397 |
| Copyright terms: Public domain | W3C validator |