| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omcl | Structured version Visualization version GIF version | ||
| Description: Closure law for ordinal multiplication. Proposition 8.16 of [TakeutiZaring] p. 57. Remark 2.8 of [Schloeder] p. 5. (Contributed by NM, 3-Aug-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| omcl | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7354 | . . . 4 ⊢ (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅)) | |
| 2 | 1 | eleq1d 2816 | . . 3 ⊢ (𝑥 = ∅ → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o ∅) ∈ On)) |
| 3 | oveq2 7354 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦)) | |
| 4 | 3 | eleq1d 2816 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o 𝑦) ∈ On)) |
| 5 | oveq2 7354 | . . . 4 ⊢ (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦)) | |
| 6 | 5 | eleq1d 2816 | . . 3 ⊢ (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o suc 𝑦) ∈ On)) |
| 7 | oveq2 7354 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐵)) | |
| 8 | 7 | eleq1d 2816 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o 𝐵) ∈ On)) |
| 9 | om0 8432 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = ∅) | |
| 10 | 0elon 6361 | . . . 4 ⊢ ∅ ∈ On | |
| 11 | 9, 10 | eqeltrdi 2839 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) ∈ On) |
| 12 | oacl 8450 | . . . . . . 7 ⊢ (((𝐴 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On) | |
| 13 | 12 | expcom 413 | . . . . . 6 ⊢ (𝐴 ∈ On → ((𝐴 ·o 𝑦) ∈ On → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On)) |
| 14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝑦) ∈ On → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On)) |
| 15 | omsuc 8441 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴)) | |
| 16 | 15 | eleq1d 2816 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o suc 𝑦) ∈ On ↔ ((𝐴 ·o 𝑦) +o 𝐴) ∈ On)) |
| 17 | 14, 16 | sylibrd 259 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝑦) ∈ On → (𝐴 ·o suc 𝑦) ∈ On)) |
| 18 | 17 | expcom 413 | . . 3 ⊢ (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴 ·o 𝑦) ∈ On → (𝐴 ·o suc 𝑦) ∈ On))) |
| 19 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 20 | iunon 8259 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On) → ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On) | |
| 21 | 19, 20 | mpan 690 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On → ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On) |
| 22 | omlim 8448 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ·o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦)) | |
| 23 | 19, 22 | mpanr1 703 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → (𝐴 ·o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦)) |
| 24 | 23 | eleq1d 2816 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → ((𝐴 ·o 𝑥) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On)) |
| 25 | 21, 24 | imbitrrid 246 | . . . 4 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → (∀𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On → (𝐴 ·o 𝑥) ∈ On)) |
| 26 | 25 | expcom 413 | . . 3 ⊢ (Lim 𝑥 → (𝐴 ∈ On → (∀𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On → (𝐴 ·o 𝑥) ∈ On))) |
| 27 | 2, 4, 6, 8, 11, 18, 26 | tfinds3 7795 | . 2 ⊢ (𝐵 ∈ On → (𝐴 ∈ On → (𝐴 ·o 𝐵) ∈ On)) |
| 28 | 27 | impcom 407 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∅c0 4283 ∪ ciun 4941 Oncon0 6306 Lim wlim 6307 suc csuc 6308 (class class class)co 7346 +o coa 8382 ·o comu 8383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-oadd 8389 df-omul 8390 |
| This theorem is referenced by: oecl 8452 omordi 8481 omord2 8482 omcan 8484 omword 8485 omwordri 8487 om00 8490 om00el 8491 omlimcl 8493 odi 8494 omass 8495 oneo 8496 omeulem1 8497 omeulem2 8498 omopth2 8499 oeoelem 8513 oeoe 8514 oeeui 8517 oaabs2 8564 omxpenlem 8991 omxpen 8992 cantnfle 9561 cantnflt 9562 cantnflem1d 9578 cantnflem1 9579 cantnflem3 9581 cantnflem4 9582 cnfcomlem 9589 xpnum 9844 infxpenc 9909 dfac12lem2 10036 onexomgt 43280 omlimcl2 43281 onexlimgt 43282 onexoegt 43283 oaomoecl 43317 oaabsb 43333 dflim5 43368 omabs2 43371 naddwordnexlem0 43435 naddwordnexlem1 43436 naddwordnexlem3 43438 oawordex3 43439 naddwordnexlem4 43440 |
| Copyright terms: Public domain | W3C validator |