![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omcl | Structured version Visualization version GIF version |
Description: Closure law for ordinal multiplication. Proposition 8.16 of [TakeutiZaring] p. 57. (Contributed by NM, 3-Aug-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
omcl | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6930 | . . . 4 ⊢ (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅)) | |
2 | 1 | eleq1d 2843 | . . 3 ⊢ (𝑥 = ∅ → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o ∅) ∈ On)) |
3 | oveq2 6930 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦)) | |
4 | 3 | eleq1d 2843 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o 𝑦) ∈ On)) |
5 | oveq2 6930 | . . . 4 ⊢ (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦)) | |
6 | 5 | eleq1d 2843 | . . 3 ⊢ (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o suc 𝑦) ∈ On)) |
7 | oveq2 6930 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐵)) | |
8 | 7 | eleq1d 2843 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o 𝐵) ∈ On)) |
9 | om0 7881 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = ∅) | |
10 | 0elon 6029 | . . . 4 ⊢ ∅ ∈ On | |
11 | 9, 10 | syl6eqel 2866 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) ∈ On) |
12 | oacl 7899 | . . . . . . 7 ⊢ (((𝐴 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On) | |
13 | 12 | expcom 404 | . . . . . 6 ⊢ (𝐴 ∈ On → ((𝐴 ·o 𝑦) ∈ On → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On)) |
14 | 13 | adantr 474 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝑦) ∈ On → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On)) |
15 | omsuc 7890 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴)) | |
16 | 15 | eleq1d 2843 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o suc 𝑦) ∈ On ↔ ((𝐴 ·o 𝑦) +o 𝐴) ∈ On)) |
17 | 14, 16 | sylibrd 251 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝑦) ∈ On → (𝐴 ·o suc 𝑦) ∈ On)) |
18 | 17 | expcom 404 | . . 3 ⊢ (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴 ·o 𝑦) ∈ On → (𝐴 ·o suc 𝑦) ∈ On))) |
19 | vex 3400 | . . . . . 6 ⊢ 𝑥 ∈ V | |
20 | iunon 7719 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On) → ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On) | |
21 | 19, 20 | mpan 680 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On → ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On) |
22 | omlim 7897 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ·o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦)) | |
23 | 19, 22 | mpanr1 693 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → (𝐴 ·o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦)) |
24 | 23 | eleq1d 2843 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → ((𝐴 ·o 𝑥) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On)) |
25 | 21, 24 | syl5ibr 238 | . . . 4 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → (∀𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On → (𝐴 ·o 𝑥) ∈ On)) |
26 | 25 | expcom 404 | . . 3 ⊢ (Lim 𝑥 → (𝐴 ∈ On → (∀𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On → (𝐴 ·o 𝑥) ∈ On))) |
27 | 2, 4, 6, 8, 11, 18, 26 | tfinds3 7342 | . 2 ⊢ (𝐵 ∈ On → (𝐴 ∈ On → (𝐴 ·o 𝐵) ∈ On)) |
28 | 27 | impcom 398 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ∀wral 3089 Vcvv 3397 ∅c0 4140 ∪ ciun 4753 Oncon0 5976 Lim wlim 5977 suc csuc 5978 (class class class)co 6922 +o coa 7840 ·o comu 7841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-oadd 7847 df-omul 7848 |
This theorem is referenced by: oecl 7901 omordi 7930 omord2 7931 omcan 7933 omword 7934 omwordri 7936 om00 7939 om00el 7940 omlimcl 7942 odi 7943 omass 7944 oneo 7945 omeulem1 7946 omeulem2 7947 omopth2 7948 oeoelem 7962 oeoe 7963 oeeui 7966 oaabs2 8009 omxpenlem 8349 omxpen 8350 cantnfle 8865 cantnflt 8866 cantnflem1d 8882 cantnflem1 8883 cantnflem3 8885 cantnflem4 8886 cnfcomlem 8893 xpnum 9110 infxpenc 9174 dfac12lem2 9301 |
Copyright terms: Public domain | W3C validator |