| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omcl | Structured version Visualization version GIF version | ||
| Description: Closure law for ordinal multiplication. Proposition 8.16 of [TakeutiZaring] p. 57. Remark 2.8 of [Schloeder] p. 5. (Contributed by NM, 3-Aug-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| omcl | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7377 | . . . 4 ⊢ (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅)) | |
| 2 | 1 | eleq1d 2813 | . . 3 ⊢ (𝑥 = ∅ → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o ∅) ∈ On)) |
| 3 | oveq2 7377 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦)) | |
| 4 | 3 | eleq1d 2813 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o 𝑦) ∈ On)) |
| 5 | oveq2 7377 | . . . 4 ⊢ (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦)) | |
| 6 | 5 | eleq1d 2813 | . . 3 ⊢ (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o suc 𝑦) ∈ On)) |
| 7 | oveq2 7377 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐵)) | |
| 8 | 7 | eleq1d 2813 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ·o 𝑥) ∈ On ↔ (𝐴 ·o 𝐵) ∈ On)) |
| 9 | om0 8458 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = ∅) | |
| 10 | 0elon 6375 | . . . 4 ⊢ ∅ ∈ On | |
| 11 | 9, 10 | eqeltrdi 2836 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) ∈ On) |
| 12 | oacl 8476 | . . . . . . 7 ⊢ (((𝐴 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On) | |
| 13 | 12 | expcom 413 | . . . . . 6 ⊢ (𝐴 ∈ On → ((𝐴 ·o 𝑦) ∈ On → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On)) |
| 14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝑦) ∈ On → ((𝐴 ·o 𝑦) +o 𝐴) ∈ On)) |
| 15 | omsuc 8467 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴)) | |
| 16 | 15 | eleq1d 2813 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o suc 𝑦) ∈ On ↔ ((𝐴 ·o 𝑦) +o 𝐴) ∈ On)) |
| 17 | 14, 16 | sylibrd 259 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝑦) ∈ On → (𝐴 ·o suc 𝑦) ∈ On)) |
| 18 | 17 | expcom 413 | . . 3 ⊢ (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴 ·o 𝑦) ∈ On → (𝐴 ·o suc 𝑦) ∈ On))) |
| 19 | vex 3448 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 20 | iunon 8285 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On) → ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On) | |
| 21 | 19, 20 | mpan 690 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On → ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On) |
| 22 | omlim 8474 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ·o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦)) | |
| 23 | 19, 22 | mpanr1 703 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → (𝐴 ·o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦)) |
| 24 | 23 | eleq1d 2813 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → ((𝐴 ·o 𝑥) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On)) |
| 25 | 21, 24 | imbitrrid 246 | . . . 4 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → (∀𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On → (𝐴 ·o 𝑥) ∈ On)) |
| 26 | 25 | expcom 413 | . . 3 ⊢ (Lim 𝑥 → (𝐴 ∈ On → (∀𝑦 ∈ 𝑥 (𝐴 ·o 𝑦) ∈ On → (𝐴 ·o 𝑥) ∈ On))) |
| 27 | 2, 4, 6, 8, 11, 18, 26 | tfinds3 7821 | . 2 ⊢ (𝐵 ∈ On → (𝐴 ∈ On → (𝐴 ·o 𝐵) ∈ On)) |
| 28 | 27 | impcom 407 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ∅c0 4292 ∪ ciun 4951 Oncon0 6320 Lim wlim 6321 suc csuc 6322 (class class class)co 7369 +o coa 8408 ·o comu 8409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-oadd 8415 df-omul 8416 |
| This theorem is referenced by: oecl 8478 omordi 8507 omord2 8508 omcan 8510 omword 8511 omwordri 8513 om00 8516 om00el 8517 omlimcl 8519 odi 8520 omass 8521 oneo 8522 omeulem1 8523 omeulem2 8524 omopth2 8525 oeoelem 8539 oeoe 8540 oeeui 8543 oaabs2 8590 omxpenlem 9019 omxpen 9020 cantnfle 9600 cantnflt 9601 cantnflem1d 9617 cantnflem1 9618 cantnflem3 9620 cantnflem4 9621 cnfcomlem 9628 xpnum 9880 infxpenc 9947 dfac12lem2 10074 onexomgt 43203 omlimcl2 43204 onexlimgt 43205 onexoegt 43206 oaomoecl 43240 oaabsb 43256 dflim5 43291 omabs2 43294 naddwordnexlem0 43358 naddwordnexlem1 43359 naddwordnexlem3 43361 oawordex3 43362 naddwordnexlem4 43363 |
| Copyright terms: Public domain | W3C validator |