HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hstle Structured version   Visualization version   GIF version

Theorem hstle 32216
Description: Ordering property of a Hilbert-space-valued state. (Contributed by NM, 26-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hstle (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (norm‘(𝑆𝐴)) ≤ (norm‘(𝑆𝐵)))

Proof of Theorem hstle
StepHypRef Expression
1 hstnmoc 32209 . . . . . . . 8 ((𝑆 ∈ CHStates ∧ 𝐵C ) → (((norm‘(𝑆𝐵))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) = 1)
21adantlr 715 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐵))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) = 1)
32oveq2d 7426 . . . . . 6 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐴))↑2) + (((norm‘(𝑆𝐵))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) = (((norm‘(𝑆𝐴))↑2) + 1))
4 hstcl 32203 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (𝑆𝐴) ∈ ℋ)
5 normcl 31111 . . . . . . . . . . 11 ((𝑆𝐴) ∈ ℋ → (norm‘(𝑆𝐴)) ∈ ℝ)
64, 5syl 17 . . . . . . . . . 10 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (norm‘(𝑆𝐴)) ∈ ℝ)
76resqcld 14148 . . . . . . . . 9 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴))↑2) ∈ ℝ)
87adantr 480 . . . . . . . 8 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐴))↑2) ∈ ℝ)
98recnd 11268 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐴))↑2) ∈ ℂ)
10 hstcl 32203 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ 𝐵C ) → (𝑆𝐵) ∈ ℋ)
11 normcl 31111 . . . . . . . . . . 11 ((𝑆𝐵) ∈ ℋ → (norm‘(𝑆𝐵)) ∈ ℝ)
1210, 11syl 17 . . . . . . . . . 10 ((𝑆 ∈ CHStates ∧ 𝐵C ) → (norm‘(𝑆𝐵)) ∈ ℝ)
1312resqcld 14148 . . . . . . . . 9 ((𝑆 ∈ CHStates ∧ 𝐵C ) → ((norm‘(𝑆𝐵))↑2) ∈ ℝ)
1413adantlr 715 . . . . . . . 8 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐵))↑2) ∈ ℝ)
1514recnd 11268 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐵))↑2) ∈ ℂ)
16 choccl 31292 . . . . . . . . . . . 12 (𝐵C → (⊥‘𝐵) ∈ C )
17 hstcl 32203 . . . . . . . . . . . 12 ((𝑆 ∈ CHStates ∧ (⊥‘𝐵) ∈ C ) → (𝑆‘(⊥‘𝐵)) ∈ ℋ)
1816, 17sylan2 593 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ 𝐵C ) → (𝑆‘(⊥‘𝐵)) ∈ ℋ)
19 normcl 31111 . . . . . . . . . . 11 ((𝑆‘(⊥‘𝐵)) ∈ ℋ → (norm‘(𝑆‘(⊥‘𝐵))) ∈ ℝ)
2018, 19syl 17 . . . . . . . . . 10 ((𝑆 ∈ CHStates ∧ 𝐵C ) → (norm‘(𝑆‘(⊥‘𝐵))) ∈ ℝ)
2120resqcld 14148 . . . . . . . . 9 ((𝑆 ∈ CHStates ∧ 𝐵C ) → ((norm‘(𝑆‘(⊥‘𝐵)))↑2) ∈ ℝ)
2221adantlr 715 . . . . . . . 8 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆‘(⊥‘𝐵)))↑2) ∈ ℝ)
2322recnd 11268 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆‘(⊥‘𝐵)))↑2) ∈ ℂ)
249, 15, 23add12d 11467 . . . . . 6 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐴))↑2) + (((norm‘(𝑆𝐵))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) = (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))))
253, 24eqtr3d 2773 . . . . 5 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐴))↑2) + 1) = (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))))
2625adantrr 717 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (((norm‘(𝑆𝐴))↑2) + 1) = (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))))
2716adantr 480 . . . . . . . 8 ((𝐵C𝐴𝐵) → (⊥‘𝐵) ∈ C )
28 ococ 31392 . . . . . . . . . 10 (𝐵C → (⊥‘(⊥‘𝐵)) = 𝐵)
2928sseq2d 3996 . . . . . . . . 9 (𝐵C → (𝐴 ⊆ (⊥‘(⊥‘𝐵)) ↔ 𝐴𝐵))
3029biimpar 477 . . . . . . . 8 ((𝐵C𝐴𝐵) → 𝐴 ⊆ (⊥‘(⊥‘𝐵)))
3127, 30jca 511 . . . . . . 7 ((𝐵C𝐴𝐵) → ((⊥‘𝐵) ∈ C𝐴 ⊆ (⊥‘(⊥‘𝐵))))
32 hstpyth 32215 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ ((⊥‘𝐵) ∈ C𝐴 ⊆ (⊥‘(⊥‘𝐵)))) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) = (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)))
3331, 32sylan2 593 . . . . . 6 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) = (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)))
34 chjcl 31343 . . . . . . . . . . . . 13 ((𝐴C ∧ (⊥‘𝐵) ∈ C ) → (𝐴 (⊥‘𝐵)) ∈ C )
3516, 34sylan2 593 . . . . . . . . . . . 12 ((𝐴C𝐵C ) → (𝐴 (⊥‘𝐵)) ∈ C )
36 hstcl 32203 . . . . . . . . . . . 12 ((𝑆 ∈ CHStates ∧ (𝐴 (⊥‘𝐵)) ∈ C ) → (𝑆‘(𝐴 (⊥‘𝐵))) ∈ ℋ)
3735, 36sylan2 593 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ (𝐴C𝐵C )) → (𝑆‘(𝐴 (⊥‘𝐵))) ∈ ℋ)
3837anassrs 467 . . . . . . . . . 10 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (𝑆‘(𝐴 (⊥‘𝐵))) ∈ ℋ)
39 normcl 31111 . . . . . . . . . 10 ((𝑆‘(𝐴 (⊥‘𝐵))) ∈ ℋ → (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ∈ ℝ)
4038, 39syl 17 . . . . . . . . 9 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ∈ ℝ)
41 normge0 31112 . . . . . . . . . 10 ((𝑆‘(𝐴 (⊥‘𝐵))) ∈ ℋ → 0 ≤ (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))))
4238, 41syl 17 . . . . . . . . 9 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → 0 ≤ (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))))
43 hstle1 32212 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ (𝐴 (⊥‘𝐵)) ∈ C ) → (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ≤ 1)
4435, 43sylan2 593 . . . . . . . . . 10 ((𝑆 ∈ CHStates ∧ (𝐴C𝐵C )) → (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ≤ 1)
4544anassrs 467 . . . . . . . . 9 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ≤ 1)
46 1re 11240 . . . . . . . . . 10 1 ∈ ℝ
47 le2sq2 14158 . . . . . . . . . 10 ((((norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆‘(𝐴 (⊥‘𝐵))))) ∧ (1 ∈ ℝ ∧ (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ≤ 1)) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) ≤ (1↑2))
4846, 47mpanr1 703 . . . . . . . . 9 ((((norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆‘(𝐴 (⊥‘𝐵))))) ∧ (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ≤ 1) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) ≤ (1↑2))
4940, 42, 45, 48syl21anc 837 . . . . . . . 8 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) ≤ (1↑2))
50 sq1 14218 . . . . . . . 8 (1↑2) = 1
5149, 50breqtrdi 5165 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) ≤ 1)
5251adantrr 717 . . . . . 6 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) ≤ 1)
5333, 52eqbrtrrd 5148 . . . . 5 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1)
548, 22readdcld 11269 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ∈ ℝ)
55 leadd2 11711 . . . . . . . 8 (((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((norm‘(𝑆𝐵))↑2) ∈ ℝ) → ((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1 ↔ (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
5646, 55mp3an2 1451 . . . . . . 7 (((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ∈ ℝ ∧ ((norm‘(𝑆𝐵))↑2) ∈ ℝ) → ((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1 ↔ (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
5754, 14, 56syl2anc 584 . . . . . 6 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1 ↔ (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
5857adantrr 717 . . . . 5 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → ((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1 ↔ (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
5953, 58mpbid 232 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) ≤ (((norm‘(𝑆𝐵))↑2) + 1))
6026, 59eqbrtrd 5146 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (((norm‘(𝑆𝐴))↑2) + 1) ≤ (((norm‘(𝑆𝐵))↑2) + 1))
61 leadd1 11710 . . . . . 6 ((((norm‘(𝑆𝐴))↑2) ∈ ℝ ∧ ((norm‘(𝑆𝐵))↑2) ∈ ℝ ∧ 1 ∈ ℝ) → (((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2) ↔ (((norm‘(𝑆𝐴))↑2) + 1) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
6246, 61mp3an3 1452 . . . . 5 ((((norm‘(𝑆𝐴))↑2) ∈ ℝ ∧ ((norm‘(𝑆𝐵))↑2) ∈ ℝ) → (((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2) ↔ (((norm‘(𝑆𝐴))↑2) + 1) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
638, 14, 62syl2anc 584 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2) ↔ (((norm‘(𝑆𝐴))↑2) + 1) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
6463adantrr 717 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2) ↔ (((norm‘(𝑆𝐴))↑2) + 1) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
6560, 64mpbird 257 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → ((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2))
66 normge0 31112 . . . . . . 7 ((𝑆𝐴) ∈ ℋ → 0 ≤ (norm‘(𝑆𝐴)))
674, 66syl 17 . . . . . 6 ((𝑆 ∈ CHStates ∧ 𝐴C ) → 0 ≤ (norm‘(𝑆𝐴)))
686, 67jca 511 . . . . 5 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐴))))
6968adantr 480 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐴)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐴))))
70 normge0 31112 . . . . . . 7 ((𝑆𝐵) ∈ ℋ → 0 ≤ (norm‘(𝑆𝐵)))
7110, 70syl 17 . . . . . 6 ((𝑆 ∈ CHStates ∧ 𝐵C ) → 0 ≤ (norm‘(𝑆𝐵)))
7212, 71jca 511 . . . . 5 ((𝑆 ∈ CHStates ∧ 𝐵C ) → ((norm‘(𝑆𝐵)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐵))))
7372adantlr 715 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐵)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐵))))
74 le2sq 14157 . . . 4 ((((norm‘(𝑆𝐴)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐴))) ∧ ((norm‘(𝑆𝐵)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐵)))) → ((norm‘(𝑆𝐴)) ≤ (norm‘(𝑆𝐵)) ↔ ((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2)))
7569, 73, 74syl2anc 584 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐴)) ≤ (norm‘(𝑆𝐵)) ↔ ((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2)))
7675adantrr 717 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → ((norm‘(𝑆𝐴)) ≤ (norm‘(𝑆𝐵)) ↔ ((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2)))
7765, 76mpbird 257 1 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (norm‘(𝑆𝐴)) ≤ (norm‘(𝑆𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3931   class class class wbr 5124  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134  1c1 11135   + caddc 11137  cle 11275  2c2 12300  cexp 14084  chba 30905  normcno 30909   C cch 30915  cort 30916   chj 30919  CHStateschst 30949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cc 10454  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214  ax-hilex 30985  ax-hfvadd 30986  ax-hvcom 30987  ax-hvass 30988  ax-hv0cl 30989  ax-hvaddid 30990  ax-hfvmul 30991  ax-hvmulid 30992  ax-hvmulass 30993  ax-hvdistr1 30994  ax-hvdistr2 30995  ax-hvmul0 30996  ax-hfi 31065  ax-his1 31068  ax-his2 31069  ax-his3 31070  ax-his4 31071  ax-hcompl 31188
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-acn 9961  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-cn 23170  df-cnp 23171  df-lm 23172  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cfil 25212  df-cau 25213  df-cmet 25214  df-grpo 30479  df-gid 30480  df-ginv 30481  df-gdiv 30482  df-ablo 30531  df-vc 30545  df-nv 30578  df-va 30581  df-ba 30582  df-sm 30583  df-0v 30584  df-vs 30585  df-nmcv 30586  df-ims 30587  df-dip 30687  df-ssp 30708  df-ph 30799  df-cbn 30849  df-hnorm 30954  df-hba 30955  df-hvsub 30957  df-hlim 30958  df-hcau 30959  df-sh 31193  df-ch 31207  df-oc 31238  df-ch0 31239  df-chj 31296  df-hst 32198
This theorem is referenced by:  hstles  32217
  Copyright terms: Public domain W3C validator