HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hstle Structured version   Visualization version   GIF version

Theorem hstle 32159
Description: Ordering property of a Hilbert-space-valued state. (Contributed by NM, 26-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hstle (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (norm‘(𝑆𝐴)) ≤ (norm‘(𝑆𝐵)))

Proof of Theorem hstle
StepHypRef Expression
1 hstnmoc 32152 . . . . . . . 8 ((𝑆 ∈ CHStates ∧ 𝐵C ) → (((norm‘(𝑆𝐵))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) = 1)
21adantlr 715 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐵))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) = 1)
32oveq2d 7403 . . . . . 6 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐴))↑2) + (((norm‘(𝑆𝐵))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) = (((norm‘(𝑆𝐴))↑2) + 1))
4 hstcl 32146 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (𝑆𝐴) ∈ ℋ)
5 normcl 31054 . . . . . . . . . . 11 ((𝑆𝐴) ∈ ℋ → (norm‘(𝑆𝐴)) ∈ ℝ)
64, 5syl 17 . . . . . . . . . 10 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (norm‘(𝑆𝐴)) ∈ ℝ)
76resqcld 14090 . . . . . . . . 9 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴))↑2) ∈ ℝ)
87adantr 480 . . . . . . . 8 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐴))↑2) ∈ ℝ)
98recnd 11202 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐴))↑2) ∈ ℂ)
10 hstcl 32146 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ 𝐵C ) → (𝑆𝐵) ∈ ℋ)
11 normcl 31054 . . . . . . . . . . 11 ((𝑆𝐵) ∈ ℋ → (norm‘(𝑆𝐵)) ∈ ℝ)
1210, 11syl 17 . . . . . . . . . 10 ((𝑆 ∈ CHStates ∧ 𝐵C ) → (norm‘(𝑆𝐵)) ∈ ℝ)
1312resqcld 14090 . . . . . . . . 9 ((𝑆 ∈ CHStates ∧ 𝐵C ) → ((norm‘(𝑆𝐵))↑2) ∈ ℝ)
1413adantlr 715 . . . . . . . 8 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐵))↑2) ∈ ℝ)
1514recnd 11202 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐵))↑2) ∈ ℂ)
16 choccl 31235 . . . . . . . . . . . 12 (𝐵C → (⊥‘𝐵) ∈ C )
17 hstcl 32146 . . . . . . . . . . . 12 ((𝑆 ∈ CHStates ∧ (⊥‘𝐵) ∈ C ) → (𝑆‘(⊥‘𝐵)) ∈ ℋ)
1816, 17sylan2 593 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ 𝐵C ) → (𝑆‘(⊥‘𝐵)) ∈ ℋ)
19 normcl 31054 . . . . . . . . . . 11 ((𝑆‘(⊥‘𝐵)) ∈ ℋ → (norm‘(𝑆‘(⊥‘𝐵))) ∈ ℝ)
2018, 19syl 17 . . . . . . . . . 10 ((𝑆 ∈ CHStates ∧ 𝐵C ) → (norm‘(𝑆‘(⊥‘𝐵))) ∈ ℝ)
2120resqcld 14090 . . . . . . . . 9 ((𝑆 ∈ CHStates ∧ 𝐵C ) → ((norm‘(𝑆‘(⊥‘𝐵)))↑2) ∈ ℝ)
2221adantlr 715 . . . . . . . 8 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆‘(⊥‘𝐵)))↑2) ∈ ℝ)
2322recnd 11202 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆‘(⊥‘𝐵)))↑2) ∈ ℂ)
249, 15, 23add12d 11401 . . . . . 6 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐴))↑2) + (((norm‘(𝑆𝐵))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) = (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))))
253, 24eqtr3d 2766 . . . . 5 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐴))↑2) + 1) = (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))))
2625adantrr 717 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (((norm‘(𝑆𝐴))↑2) + 1) = (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))))
2716adantr 480 . . . . . . . 8 ((𝐵C𝐴𝐵) → (⊥‘𝐵) ∈ C )
28 ococ 31335 . . . . . . . . . 10 (𝐵C → (⊥‘(⊥‘𝐵)) = 𝐵)
2928sseq2d 3979 . . . . . . . . 9 (𝐵C → (𝐴 ⊆ (⊥‘(⊥‘𝐵)) ↔ 𝐴𝐵))
3029biimpar 477 . . . . . . . 8 ((𝐵C𝐴𝐵) → 𝐴 ⊆ (⊥‘(⊥‘𝐵)))
3127, 30jca 511 . . . . . . 7 ((𝐵C𝐴𝐵) → ((⊥‘𝐵) ∈ C𝐴 ⊆ (⊥‘(⊥‘𝐵))))
32 hstpyth 32158 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ ((⊥‘𝐵) ∈ C𝐴 ⊆ (⊥‘(⊥‘𝐵)))) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) = (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)))
3331, 32sylan2 593 . . . . . 6 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) = (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)))
34 chjcl 31286 . . . . . . . . . . . . 13 ((𝐴C ∧ (⊥‘𝐵) ∈ C ) → (𝐴 (⊥‘𝐵)) ∈ C )
3516, 34sylan2 593 . . . . . . . . . . . 12 ((𝐴C𝐵C ) → (𝐴 (⊥‘𝐵)) ∈ C )
36 hstcl 32146 . . . . . . . . . . . 12 ((𝑆 ∈ CHStates ∧ (𝐴 (⊥‘𝐵)) ∈ C ) → (𝑆‘(𝐴 (⊥‘𝐵))) ∈ ℋ)
3735, 36sylan2 593 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ (𝐴C𝐵C )) → (𝑆‘(𝐴 (⊥‘𝐵))) ∈ ℋ)
3837anassrs 467 . . . . . . . . . 10 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (𝑆‘(𝐴 (⊥‘𝐵))) ∈ ℋ)
39 normcl 31054 . . . . . . . . . 10 ((𝑆‘(𝐴 (⊥‘𝐵))) ∈ ℋ → (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ∈ ℝ)
4038, 39syl 17 . . . . . . . . 9 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ∈ ℝ)
41 normge0 31055 . . . . . . . . . 10 ((𝑆‘(𝐴 (⊥‘𝐵))) ∈ ℋ → 0 ≤ (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))))
4238, 41syl 17 . . . . . . . . 9 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → 0 ≤ (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))))
43 hstle1 32155 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ (𝐴 (⊥‘𝐵)) ∈ C ) → (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ≤ 1)
4435, 43sylan2 593 . . . . . . . . . 10 ((𝑆 ∈ CHStates ∧ (𝐴C𝐵C )) → (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ≤ 1)
4544anassrs 467 . . . . . . . . 9 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ≤ 1)
46 1re 11174 . . . . . . . . . 10 1 ∈ ℝ
47 le2sq2 14100 . . . . . . . . . 10 ((((norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆‘(𝐴 (⊥‘𝐵))))) ∧ (1 ∈ ℝ ∧ (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ≤ 1)) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) ≤ (1↑2))
4846, 47mpanr1 703 . . . . . . . . 9 ((((norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆‘(𝐴 (⊥‘𝐵))))) ∧ (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ≤ 1) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) ≤ (1↑2))
4940, 42, 45, 48syl21anc 837 . . . . . . . 8 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) ≤ (1↑2))
50 sq1 14160 . . . . . . . 8 (1↑2) = 1
5149, 50breqtrdi 5148 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) ≤ 1)
5251adantrr 717 . . . . . 6 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) ≤ 1)
5333, 52eqbrtrrd 5131 . . . . 5 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1)
548, 22readdcld 11203 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ∈ ℝ)
55 leadd2 11647 . . . . . . . 8 (((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((norm‘(𝑆𝐵))↑2) ∈ ℝ) → ((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1 ↔ (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
5646, 55mp3an2 1451 . . . . . . 7 (((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ∈ ℝ ∧ ((norm‘(𝑆𝐵))↑2) ∈ ℝ) → ((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1 ↔ (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
5754, 14, 56syl2anc 584 . . . . . 6 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1 ↔ (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
5857adantrr 717 . . . . 5 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → ((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1 ↔ (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
5953, 58mpbid 232 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) ≤ (((norm‘(𝑆𝐵))↑2) + 1))
6026, 59eqbrtrd 5129 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (((norm‘(𝑆𝐴))↑2) + 1) ≤ (((norm‘(𝑆𝐵))↑2) + 1))
61 leadd1 11646 . . . . . 6 ((((norm‘(𝑆𝐴))↑2) ∈ ℝ ∧ ((norm‘(𝑆𝐵))↑2) ∈ ℝ ∧ 1 ∈ ℝ) → (((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2) ↔ (((norm‘(𝑆𝐴))↑2) + 1) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
6246, 61mp3an3 1452 . . . . 5 ((((norm‘(𝑆𝐴))↑2) ∈ ℝ ∧ ((norm‘(𝑆𝐵))↑2) ∈ ℝ) → (((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2) ↔ (((norm‘(𝑆𝐴))↑2) + 1) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
638, 14, 62syl2anc 584 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2) ↔ (((norm‘(𝑆𝐴))↑2) + 1) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
6463adantrr 717 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2) ↔ (((norm‘(𝑆𝐴))↑2) + 1) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
6560, 64mpbird 257 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → ((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2))
66 normge0 31055 . . . . . . 7 ((𝑆𝐴) ∈ ℋ → 0 ≤ (norm‘(𝑆𝐴)))
674, 66syl 17 . . . . . 6 ((𝑆 ∈ CHStates ∧ 𝐴C ) → 0 ≤ (norm‘(𝑆𝐴)))
686, 67jca 511 . . . . 5 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐴))))
6968adantr 480 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐴)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐴))))
70 normge0 31055 . . . . . . 7 ((𝑆𝐵) ∈ ℋ → 0 ≤ (norm‘(𝑆𝐵)))
7110, 70syl 17 . . . . . 6 ((𝑆 ∈ CHStates ∧ 𝐵C ) → 0 ≤ (norm‘(𝑆𝐵)))
7212, 71jca 511 . . . . 5 ((𝑆 ∈ CHStates ∧ 𝐵C ) → ((norm‘(𝑆𝐵)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐵))))
7372adantlr 715 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐵)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐵))))
74 le2sq 14099 . . . 4 ((((norm‘(𝑆𝐴)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐴))) ∧ ((norm‘(𝑆𝐵)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐵)))) → ((norm‘(𝑆𝐴)) ≤ (norm‘(𝑆𝐵)) ↔ ((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2)))
7569, 73, 74syl2anc 584 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐴)) ≤ (norm‘(𝑆𝐵)) ↔ ((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2)))
7675adantrr 717 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → ((norm‘(𝑆𝐴)) ≤ (norm‘(𝑆𝐵)) ↔ ((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2)))
7765, 76mpbird 257 1 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (norm‘(𝑆𝐴)) ≤ (norm‘(𝑆𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  cle 11209  2c2 12241  cexp 14026  chba 30848  normcno 30852   C cch 30858  cort 30859   chj 30862  CHStateschst 30892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148  ax-hilex 30928  ax-hfvadd 30929  ax-hvcom 30930  ax-hvass 30931  ax-hv0cl 30932  ax-hvaddid 30933  ax-hfvmul 30934  ax-hvmulid 30935  ax-hvmulass 30936  ax-hvdistr1 30937  ax-hvdistr2 30938  ax-hvmul0 30939  ax-hfi 31008  ax-his1 31011  ax-his2 31012  ax-his3 31013  ax-his4 31014  ax-hcompl 31131
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-cn 23114  df-cnp 23115  df-lm 23116  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cfil 25155  df-cau 25156  df-cmet 25157  df-grpo 30422  df-gid 30423  df-ginv 30424  df-gdiv 30425  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-vs 30528  df-nmcv 30529  df-ims 30530  df-dip 30630  df-ssp 30651  df-ph 30742  df-cbn 30792  df-hnorm 30897  df-hba 30898  df-hvsub 30900  df-hlim 30901  df-hcau 30902  df-sh 31136  df-ch 31150  df-oc 31181  df-ch0 31182  df-chj 31239  df-hst 32141
This theorem is referenced by:  hstles  32160
  Copyright terms: Public domain W3C validator