HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hstle Structured version   Visualization version   GIF version

Theorem hstle 32259
Description: Ordering property of a Hilbert-space-valued state. (Contributed by NM, 26-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hstle (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (norm‘(𝑆𝐴)) ≤ (norm‘(𝑆𝐵)))

Proof of Theorem hstle
StepHypRef Expression
1 hstnmoc 32252 . . . . . . . 8 ((𝑆 ∈ CHStates ∧ 𝐵C ) → (((norm‘(𝑆𝐵))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) = 1)
21adantlr 715 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐵))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) = 1)
32oveq2d 7447 . . . . . 6 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐴))↑2) + (((norm‘(𝑆𝐵))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) = (((norm‘(𝑆𝐴))↑2) + 1))
4 hstcl 32246 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (𝑆𝐴) ∈ ℋ)
5 normcl 31154 . . . . . . . . . . 11 ((𝑆𝐴) ∈ ℋ → (norm‘(𝑆𝐴)) ∈ ℝ)
64, 5syl 17 . . . . . . . . . 10 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (norm‘(𝑆𝐴)) ∈ ℝ)
76resqcld 14162 . . . . . . . . 9 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴))↑2) ∈ ℝ)
87adantr 480 . . . . . . . 8 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐴))↑2) ∈ ℝ)
98recnd 11287 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐴))↑2) ∈ ℂ)
10 hstcl 32246 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ 𝐵C ) → (𝑆𝐵) ∈ ℋ)
11 normcl 31154 . . . . . . . . . . 11 ((𝑆𝐵) ∈ ℋ → (norm‘(𝑆𝐵)) ∈ ℝ)
1210, 11syl 17 . . . . . . . . . 10 ((𝑆 ∈ CHStates ∧ 𝐵C ) → (norm‘(𝑆𝐵)) ∈ ℝ)
1312resqcld 14162 . . . . . . . . 9 ((𝑆 ∈ CHStates ∧ 𝐵C ) → ((norm‘(𝑆𝐵))↑2) ∈ ℝ)
1413adantlr 715 . . . . . . . 8 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐵))↑2) ∈ ℝ)
1514recnd 11287 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐵))↑2) ∈ ℂ)
16 choccl 31335 . . . . . . . . . . . 12 (𝐵C → (⊥‘𝐵) ∈ C )
17 hstcl 32246 . . . . . . . . . . . 12 ((𝑆 ∈ CHStates ∧ (⊥‘𝐵) ∈ C ) → (𝑆‘(⊥‘𝐵)) ∈ ℋ)
1816, 17sylan2 593 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ 𝐵C ) → (𝑆‘(⊥‘𝐵)) ∈ ℋ)
19 normcl 31154 . . . . . . . . . . 11 ((𝑆‘(⊥‘𝐵)) ∈ ℋ → (norm‘(𝑆‘(⊥‘𝐵))) ∈ ℝ)
2018, 19syl 17 . . . . . . . . . 10 ((𝑆 ∈ CHStates ∧ 𝐵C ) → (norm‘(𝑆‘(⊥‘𝐵))) ∈ ℝ)
2120resqcld 14162 . . . . . . . . 9 ((𝑆 ∈ CHStates ∧ 𝐵C ) → ((norm‘(𝑆‘(⊥‘𝐵)))↑2) ∈ ℝ)
2221adantlr 715 . . . . . . . 8 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆‘(⊥‘𝐵)))↑2) ∈ ℝ)
2322recnd 11287 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆‘(⊥‘𝐵)))↑2) ∈ ℂ)
249, 15, 23add12d 11486 . . . . . 6 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐴))↑2) + (((norm‘(𝑆𝐵))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) = (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))))
253, 24eqtr3d 2777 . . . . 5 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐴))↑2) + 1) = (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))))
2625adantrr 717 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (((norm‘(𝑆𝐴))↑2) + 1) = (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))))
2716adantr 480 . . . . . . . 8 ((𝐵C𝐴𝐵) → (⊥‘𝐵) ∈ C )
28 ococ 31435 . . . . . . . . . 10 (𝐵C → (⊥‘(⊥‘𝐵)) = 𝐵)
2928sseq2d 4028 . . . . . . . . 9 (𝐵C → (𝐴 ⊆ (⊥‘(⊥‘𝐵)) ↔ 𝐴𝐵))
3029biimpar 477 . . . . . . . 8 ((𝐵C𝐴𝐵) → 𝐴 ⊆ (⊥‘(⊥‘𝐵)))
3127, 30jca 511 . . . . . . 7 ((𝐵C𝐴𝐵) → ((⊥‘𝐵) ∈ C𝐴 ⊆ (⊥‘(⊥‘𝐵))))
32 hstpyth 32258 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ ((⊥‘𝐵) ∈ C𝐴 ⊆ (⊥‘(⊥‘𝐵)))) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) = (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)))
3331, 32sylan2 593 . . . . . 6 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) = (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)))
34 chjcl 31386 . . . . . . . . . . . . 13 ((𝐴C ∧ (⊥‘𝐵) ∈ C ) → (𝐴 (⊥‘𝐵)) ∈ C )
3516, 34sylan2 593 . . . . . . . . . . . 12 ((𝐴C𝐵C ) → (𝐴 (⊥‘𝐵)) ∈ C )
36 hstcl 32246 . . . . . . . . . . . 12 ((𝑆 ∈ CHStates ∧ (𝐴 (⊥‘𝐵)) ∈ C ) → (𝑆‘(𝐴 (⊥‘𝐵))) ∈ ℋ)
3735, 36sylan2 593 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ (𝐴C𝐵C )) → (𝑆‘(𝐴 (⊥‘𝐵))) ∈ ℋ)
3837anassrs 467 . . . . . . . . . 10 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (𝑆‘(𝐴 (⊥‘𝐵))) ∈ ℋ)
39 normcl 31154 . . . . . . . . . 10 ((𝑆‘(𝐴 (⊥‘𝐵))) ∈ ℋ → (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ∈ ℝ)
4038, 39syl 17 . . . . . . . . 9 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ∈ ℝ)
41 normge0 31155 . . . . . . . . . 10 ((𝑆‘(𝐴 (⊥‘𝐵))) ∈ ℋ → 0 ≤ (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))))
4238, 41syl 17 . . . . . . . . 9 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → 0 ≤ (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))))
43 hstle1 32255 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ (𝐴 (⊥‘𝐵)) ∈ C ) → (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ≤ 1)
4435, 43sylan2 593 . . . . . . . . . 10 ((𝑆 ∈ CHStates ∧ (𝐴C𝐵C )) → (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ≤ 1)
4544anassrs 467 . . . . . . . . 9 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ≤ 1)
46 1re 11259 . . . . . . . . . 10 1 ∈ ℝ
47 le2sq2 14172 . . . . . . . . . 10 ((((norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆‘(𝐴 (⊥‘𝐵))))) ∧ (1 ∈ ℝ ∧ (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ≤ 1)) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) ≤ (1↑2))
4846, 47mpanr1 703 . . . . . . . . 9 ((((norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆‘(𝐴 (⊥‘𝐵))))) ∧ (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ≤ 1) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) ≤ (1↑2))
4940, 42, 45, 48syl21anc 838 . . . . . . . 8 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) ≤ (1↑2))
50 sq1 14231 . . . . . . . 8 (1↑2) = 1
5149, 50breqtrdi 5189 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) ≤ 1)
5251adantrr 717 . . . . . 6 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) ≤ 1)
5333, 52eqbrtrrd 5172 . . . . 5 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1)
548, 22readdcld 11288 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ∈ ℝ)
55 leadd2 11730 . . . . . . . 8 (((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((norm‘(𝑆𝐵))↑2) ∈ ℝ) → ((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1 ↔ (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
5646, 55mp3an2 1448 . . . . . . 7 (((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ∈ ℝ ∧ ((norm‘(𝑆𝐵))↑2) ∈ ℝ) → ((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1 ↔ (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
5754, 14, 56syl2anc 584 . . . . . 6 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1 ↔ (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
5857adantrr 717 . . . . 5 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → ((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1 ↔ (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
5953, 58mpbid 232 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) ≤ (((norm‘(𝑆𝐵))↑2) + 1))
6026, 59eqbrtrd 5170 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (((norm‘(𝑆𝐴))↑2) + 1) ≤ (((norm‘(𝑆𝐵))↑2) + 1))
61 leadd1 11729 . . . . . 6 ((((norm‘(𝑆𝐴))↑2) ∈ ℝ ∧ ((norm‘(𝑆𝐵))↑2) ∈ ℝ ∧ 1 ∈ ℝ) → (((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2) ↔ (((norm‘(𝑆𝐴))↑2) + 1) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
6246, 61mp3an3 1449 . . . . 5 ((((norm‘(𝑆𝐴))↑2) ∈ ℝ ∧ ((norm‘(𝑆𝐵))↑2) ∈ ℝ) → (((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2) ↔ (((norm‘(𝑆𝐴))↑2) + 1) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
638, 14, 62syl2anc 584 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2) ↔ (((norm‘(𝑆𝐴))↑2) + 1) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
6463adantrr 717 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2) ↔ (((norm‘(𝑆𝐴))↑2) + 1) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
6560, 64mpbird 257 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → ((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2))
66 normge0 31155 . . . . . . 7 ((𝑆𝐴) ∈ ℋ → 0 ≤ (norm‘(𝑆𝐴)))
674, 66syl 17 . . . . . 6 ((𝑆 ∈ CHStates ∧ 𝐴C ) → 0 ≤ (norm‘(𝑆𝐴)))
686, 67jca 511 . . . . 5 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐴))))
6968adantr 480 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐴)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐴))))
70 normge0 31155 . . . . . . 7 ((𝑆𝐵) ∈ ℋ → 0 ≤ (norm‘(𝑆𝐵)))
7110, 70syl 17 . . . . . 6 ((𝑆 ∈ CHStates ∧ 𝐵C ) → 0 ≤ (norm‘(𝑆𝐵)))
7212, 71jca 511 . . . . 5 ((𝑆 ∈ CHStates ∧ 𝐵C ) → ((norm‘(𝑆𝐵)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐵))))
7372adantlr 715 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐵)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐵))))
74 le2sq 14171 . . . 4 ((((norm‘(𝑆𝐴)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐴))) ∧ ((norm‘(𝑆𝐵)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐵)))) → ((norm‘(𝑆𝐴)) ≤ (norm‘(𝑆𝐵)) ↔ ((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2)))
7569, 73, 74syl2anc 584 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐴)) ≤ (norm‘(𝑆𝐵)) ↔ ((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2)))
7675adantrr 717 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → ((norm‘(𝑆𝐴)) ≤ (norm‘(𝑆𝐵)) ↔ ((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2)))
7765, 76mpbird 257 1 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (norm‘(𝑆𝐴)) ≤ (norm‘(𝑆𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wss 3963   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156  cle 11294  2c2 12319  cexp 14099  chba 30948  normcno 30952   C cch 30958  cort 30959   chj 30962  CHStateschst 30992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cc 10473  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233  ax-hilex 31028  ax-hfvadd 31029  ax-hvcom 31030  ax-hvass 31031  ax-hv0cl 31032  ax-hvaddid 31033  ax-hfvmul 31034  ax-hvmulid 31035  ax-hvmulass 31036  ax-hvdistr1 31037  ax-hvdistr2 31038  ax-hvmul0 31039  ax-hfi 31108  ax-his1 31111  ax-his2 31112  ax-his3 31113  ax-his4 31114  ax-hcompl 31231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-cn 23251  df-cnp 23252  df-lm 23253  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cfil 25303  df-cau 25304  df-cmet 25305  df-grpo 30522  df-gid 30523  df-ginv 30524  df-gdiv 30525  df-ablo 30574  df-vc 30588  df-nv 30621  df-va 30624  df-ba 30625  df-sm 30626  df-0v 30627  df-vs 30628  df-nmcv 30629  df-ims 30630  df-dip 30730  df-ssp 30751  df-ph 30842  df-cbn 30892  df-hnorm 30997  df-hba 30998  df-hvsub 31000  df-hlim 31001  df-hcau 31002  df-sh 31236  df-ch 31250  df-oc 31281  df-ch0 31282  df-chj 31339  df-hst 32241
This theorem is referenced by:  hstles  32260
  Copyright terms: Public domain W3C validator