Proof of Theorem hstle
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | hstnmoc 32243 | . . . . . . . 8
⊢ ((𝑆 ∈ CHStates ∧ 𝐵 ∈
Cℋ ) →
(((normℎ‘(𝑆‘𝐵))↑2) +
((normℎ‘(𝑆‘(⊥‘𝐵)))↑2)) = 1) | 
| 2 | 1 | adantlr 715 | . . . . . . 7
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ 𝐵 ∈ Cℋ )
→ (((normℎ‘(𝑆‘𝐵))↑2) +
((normℎ‘(𝑆‘(⊥‘𝐵)))↑2)) = 1) | 
| 3 | 2 | oveq2d 7448 | . . . . . 6
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ 𝐵 ∈ Cℋ )
→ (((normℎ‘(𝑆‘𝐴))↑2) +
(((normℎ‘(𝑆‘𝐵))↑2) +
((normℎ‘(𝑆‘(⊥‘𝐵)))↑2))) =
(((normℎ‘(𝑆‘𝐴))↑2) + 1)) | 
| 4 |  | hstcl 32237 | . . . . . . . . . . 11
⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) → (𝑆‘𝐴) ∈ ℋ) | 
| 5 |  | normcl 31145 | . . . . . . . . . . 11
⊢ ((𝑆‘𝐴) ∈ ℋ →
(normℎ‘(𝑆‘𝐴)) ∈ ℝ) | 
| 6 | 4, 5 | syl 17 | . . . . . . . . . 10
⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) →
(normℎ‘(𝑆‘𝐴)) ∈ ℝ) | 
| 7 | 6 | resqcld 14166 | . . . . . . . . 9
⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) →
((normℎ‘(𝑆‘𝐴))↑2) ∈ ℝ) | 
| 8 | 7 | adantr 480 | . . . . . . . 8
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ 𝐵 ∈ Cℋ )
→ ((normℎ‘(𝑆‘𝐴))↑2) ∈ ℝ) | 
| 9 | 8 | recnd 11290 | . . . . . . 7
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ 𝐵 ∈ Cℋ )
→ ((normℎ‘(𝑆‘𝐴))↑2) ∈ ℂ) | 
| 10 |  | hstcl 32237 | . . . . . . . . . . 11
⊢ ((𝑆 ∈ CHStates ∧ 𝐵 ∈
Cℋ ) → (𝑆‘𝐵) ∈ ℋ) | 
| 11 |  | normcl 31145 | . . . . . . . . . . 11
⊢ ((𝑆‘𝐵) ∈ ℋ →
(normℎ‘(𝑆‘𝐵)) ∈ ℝ) | 
| 12 | 10, 11 | syl 17 | . . . . . . . . . 10
⊢ ((𝑆 ∈ CHStates ∧ 𝐵 ∈
Cℋ ) →
(normℎ‘(𝑆‘𝐵)) ∈ ℝ) | 
| 13 | 12 | resqcld 14166 | . . . . . . . . 9
⊢ ((𝑆 ∈ CHStates ∧ 𝐵 ∈
Cℋ ) →
((normℎ‘(𝑆‘𝐵))↑2) ∈ ℝ) | 
| 14 | 13 | adantlr 715 | . . . . . . . 8
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ 𝐵 ∈ Cℋ )
→ ((normℎ‘(𝑆‘𝐵))↑2) ∈ ℝ) | 
| 15 | 14 | recnd 11290 | . . . . . . 7
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ 𝐵 ∈ Cℋ )
→ ((normℎ‘(𝑆‘𝐵))↑2) ∈ ℂ) | 
| 16 |  | choccl 31326 | . . . . . . . . . . . 12
⊢ (𝐵 ∈
Cℋ → (⊥‘𝐵) ∈ Cℋ
) | 
| 17 |  | hstcl 32237 | . . . . . . . . . . . 12
⊢ ((𝑆 ∈ CHStates ∧
(⊥‘𝐵) ∈
Cℋ ) → (𝑆‘(⊥‘𝐵)) ∈ ℋ) | 
| 18 | 16, 17 | sylan2 593 | . . . . . . . . . . 11
⊢ ((𝑆 ∈ CHStates ∧ 𝐵 ∈
Cℋ ) → (𝑆‘(⊥‘𝐵)) ∈ ℋ) | 
| 19 |  | normcl 31145 | . . . . . . . . . . 11
⊢ ((𝑆‘(⊥‘𝐵)) ∈ ℋ →
(normℎ‘(𝑆‘(⊥‘𝐵))) ∈ ℝ) | 
| 20 | 18, 19 | syl 17 | . . . . . . . . . 10
⊢ ((𝑆 ∈ CHStates ∧ 𝐵 ∈
Cℋ ) →
(normℎ‘(𝑆‘(⊥‘𝐵))) ∈ ℝ) | 
| 21 | 20 | resqcld 14166 | . . . . . . . . 9
⊢ ((𝑆 ∈ CHStates ∧ 𝐵 ∈
Cℋ ) →
((normℎ‘(𝑆‘(⊥‘𝐵)))↑2) ∈ ℝ) | 
| 22 | 21 | adantlr 715 | . . . . . . . 8
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ 𝐵 ∈ Cℋ )
→ ((normℎ‘(𝑆‘(⊥‘𝐵)))↑2) ∈ ℝ) | 
| 23 | 22 | recnd 11290 | . . . . . . 7
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ 𝐵 ∈ Cℋ )
→ ((normℎ‘(𝑆‘(⊥‘𝐵)))↑2) ∈ ℂ) | 
| 24 | 9, 15, 23 | add12d 11489 | . . . . . 6
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ 𝐵 ∈ Cℋ )
→ (((normℎ‘(𝑆‘𝐴))↑2) +
(((normℎ‘(𝑆‘𝐵))↑2) +
((normℎ‘(𝑆‘(⊥‘𝐵)))↑2))) =
(((normℎ‘(𝑆‘𝐵))↑2) +
(((normℎ‘(𝑆‘𝐴))↑2) +
((normℎ‘(𝑆‘(⊥‘𝐵)))↑2)))) | 
| 25 | 3, 24 | eqtr3d 2778 | . . . . 5
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ 𝐵 ∈ Cℋ )
→ (((normℎ‘(𝑆‘𝐴))↑2) + 1) =
(((normℎ‘(𝑆‘𝐵))↑2) +
(((normℎ‘(𝑆‘𝐴))↑2) +
((normℎ‘(𝑆‘(⊥‘𝐵)))↑2)))) | 
| 26 | 25 | adantrr 717 | . . . 4
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ (𝐵 ∈ Cℋ
∧ 𝐴 ⊆ 𝐵)) →
(((normℎ‘(𝑆‘𝐴))↑2) + 1) =
(((normℎ‘(𝑆‘𝐵))↑2) +
(((normℎ‘(𝑆‘𝐴))↑2) +
((normℎ‘(𝑆‘(⊥‘𝐵)))↑2)))) | 
| 27 | 16 | adantr 480 | . . . . . . . 8
⊢ ((𝐵 ∈
Cℋ ∧ 𝐴 ⊆ 𝐵) → (⊥‘𝐵) ∈ Cℋ
) | 
| 28 |  | ococ 31426 | . . . . . . . . . 10
⊢ (𝐵 ∈
Cℋ → (⊥‘(⊥‘𝐵)) = 𝐵) | 
| 29 | 28 | sseq2d 4015 | . . . . . . . . 9
⊢ (𝐵 ∈
Cℋ → (𝐴 ⊆ (⊥‘(⊥‘𝐵)) ↔ 𝐴 ⊆ 𝐵)) | 
| 30 | 29 | biimpar 477 | . . . . . . . 8
⊢ ((𝐵 ∈
Cℋ ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ (⊥‘(⊥‘𝐵))) | 
| 31 | 27, 30 | jca 511 | . . . . . . 7
⊢ ((𝐵 ∈
Cℋ ∧ 𝐴 ⊆ 𝐵) → ((⊥‘𝐵) ∈ Cℋ
∧ 𝐴 ⊆
(⊥‘(⊥‘𝐵)))) | 
| 32 |  | hstpyth 32249 | . . . . . . 7
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ ((⊥‘𝐵) ∈ Cℋ
∧ 𝐴 ⊆
(⊥‘(⊥‘𝐵)))) →
((normℎ‘(𝑆‘(𝐴 ∨ℋ (⊥‘𝐵))))↑2) =
(((normℎ‘(𝑆‘𝐴))↑2) +
((normℎ‘(𝑆‘(⊥‘𝐵)))↑2))) | 
| 33 | 31, 32 | sylan2 593 | . . . . . 6
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ (𝐵 ∈ Cℋ
∧ 𝐴 ⊆ 𝐵)) →
((normℎ‘(𝑆‘(𝐴 ∨ℋ (⊥‘𝐵))))↑2) =
(((normℎ‘(𝑆‘𝐴))↑2) +
((normℎ‘(𝑆‘(⊥‘𝐵)))↑2))) | 
| 34 |  | chjcl 31377 | . . . . . . . . . . . . 13
⊢ ((𝐴 ∈
Cℋ ∧ (⊥‘𝐵) ∈ Cℋ )
→ (𝐴
∨ℋ (⊥‘𝐵)) ∈ Cℋ
) | 
| 35 | 16, 34 | sylan2 593 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
→ (𝐴
∨ℋ (⊥‘𝐵)) ∈ Cℋ
) | 
| 36 |  | hstcl 32237 | . . . . . . . . . . . 12
⊢ ((𝑆 ∈ CHStates ∧ (𝐴 ∨ℋ
(⊥‘𝐵)) ∈
Cℋ ) → (𝑆‘(𝐴 ∨ℋ (⊥‘𝐵))) ∈
ℋ) | 
| 37 | 35, 36 | sylan2 593 | . . . . . . . . . . 11
⊢ ((𝑆 ∈ CHStates ∧ (𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ ))
→ (𝑆‘(𝐴 ∨ℋ
(⊥‘𝐵))) ∈
ℋ) | 
| 38 | 37 | anassrs 467 | . . . . . . . . . 10
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ 𝐵 ∈ Cℋ )
→ (𝑆‘(𝐴 ∨ℋ
(⊥‘𝐵))) ∈
ℋ) | 
| 39 |  | normcl 31145 | . . . . . . . . . 10
⊢ ((𝑆‘(𝐴 ∨ℋ (⊥‘𝐵))) ∈ ℋ →
(normℎ‘(𝑆‘(𝐴 ∨ℋ (⊥‘𝐵)))) ∈
ℝ) | 
| 40 | 38, 39 | syl 17 | . . . . . . . . 9
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ 𝐵 ∈ Cℋ )
→ (normℎ‘(𝑆‘(𝐴 ∨ℋ (⊥‘𝐵)))) ∈
ℝ) | 
| 41 |  | normge0 31146 | . . . . . . . . . 10
⊢ ((𝑆‘(𝐴 ∨ℋ (⊥‘𝐵))) ∈ ℋ → 0 ≤
(normℎ‘(𝑆‘(𝐴 ∨ℋ (⊥‘𝐵))))) | 
| 42 | 38, 41 | syl 17 | . . . . . . . . 9
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ 𝐵 ∈ Cℋ )
→ 0 ≤ (normℎ‘(𝑆‘(𝐴 ∨ℋ (⊥‘𝐵))))) | 
| 43 |  | hstle1 32246 | . . . . . . . . . . 11
⊢ ((𝑆 ∈ CHStates ∧ (𝐴 ∨ℋ
(⊥‘𝐵)) ∈
Cℋ ) →
(normℎ‘(𝑆‘(𝐴 ∨ℋ (⊥‘𝐵)))) ≤ 1) | 
| 44 | 35, 43 | sylan2 593 | . . . . . . . . . 10
⊢ ((𝑆 ∈ CHStates ∧ (𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ ))
→ (normℎ‘(𝑆‘(𝐴 ∨ℋ (⊥‘𝐵)))) ≤ 1) | 
| 45 | 44 | anassrs 467 | . . . . . . . . 9
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ 𝐵 ∈ Cℋ )
→ (normℎ‘(𝑆‘(𝐴 ∨ℋ (⊥‘𝐵)))) ≤ 1) | 
| 46 |  | 1re 11262 | . . . . . . . . . 10
⊢ 1 ∈
ℝ | 
| 47 |  | le2sq2 14176 | . . . . . . . . . 10
⊢
((((normℎ‘(𝑆‘(𝐴 ∨ℋ (⊥‘𝐵)))) ∈ ℝ ∧ 0 ≤
(normℎ‘(𝑆‘(𝐴 ∨ℋ (⊥‘𝐵))))) ∧ (1 ∈ ℝ
∧ (normℎ‘(𝑆‘(𝐴 ∨ℋ (⊥‘𝐵)))) ≤ 1)) →
((normℎ‘(𝑆‘(𝐴 ∨ℋ (⊥‘𝐵))))↑2) ≤
(1↑2)) | 
| 48 | 46, 47 | mpanr1 703 | . . . . . . . . 9
⊢
((((normℎ‘(𝑆‘(𝐴 ∨ℋ (⊥‘𝐵)))) ∈ ℝ ∧ 0 ≤
(normℎ‘(𝑆‘(𝐴 ∨ℋ (⊥‘𝐵))))) ∧
(normℎ‘(𝑆‘(𝐴 ∨ℋ (⊥‘𝐵)))) ≤ 1) →
((normℎ‘(𝑆‘(𝐴 ∨ℋ (⊥‘𝐵))))↑2) ≤
(1↑2)) | 
| 49 | 40, 42, 45, 48 | syl21anc 837 | . . . . . . . 8
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ 𝐵 ∈ Cℋ )
→ ((normℎ‘(𝑆‘(𝐴 ∨ℋ (⊥‘𝐵))))↑2) ≤
(1↑2)) | 
| 50 |  | sq1 14235 | . . . . . . . 8
⊢
(1↑2) = 1 | 
| 51 | 49, 50 | breqtrdi 5183 | . . . . . . 7
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ 𝐵 ∈ Cℋ )
→ ((normℎ‘(𝑆‘(𝐴 ∨ℋ (⊥‘𝐵))))↑2) ≤
1) | 
| 52 | 51 | adantrr 717 | . . . . . 6
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ (𝐵 ∈ Cℋ
∧ 𝐴 ⊆ 𝐵)) →
((normℎ‘(𝑆‘(𝐴 ∨ℋ (⊥‘𝐵))))↑2) ≤
1) | 
| 53 | 33, 52 | eqbrtrrd 5166 | . . . . 5
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ (𝐵 ∈ Cℋ
∧ 𝐴 ⊆ 𝐵)) →
(((normℎ‘(𝑆‘𝐴))↑2) +
((normℎ‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1) | 
| 54 | 8, 22 | readdcld 11291 | . . . . . . 7
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ 𝐵 ∈ Cℋ )
→ (((normℎ‘(𝑆‘𝐴))↑2) +
((normℎ‘(𝑆‘(⊥‘𝐵)))↑2)) ∈
ℝ) | 
| 55 |  | leadd2 11733 | . . . . . . . 8
⊢
(((((normℎ‘(𝑆‘𝐴))↑2) +
((normℎ‘(𝑆‘(⊥‘𝐵)))↑2)) ∈ ℝ ∧ 1 ∈
ℝ ∧ ((normℎ‘(𝑆‘𝐵))↑2) ∈ ℝ) →
((((normℎ‘(𝑆‘𝐴))↑2) +
((normℎ‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1 ↔
(((normℎ‘(𝑆‘𝐵))↑2) +
(((normℎ‘(𝑆‘𝐴))↑2) +
((normℎ‘(𝑆‘(⊥‘𝐵)))↑2))) ≤
(((normℎ‘(𝑆‘𝐵))↑2) + 1))) | 
| 56 | 46, 55 | mp3an2 1450 | . . . . . . 7
⊢
(((((normℎ‘(𝑆‘𝐴))↑2) +
((normℎ‘(𝑆‘(⊥‘𝐵)))↑2)) ∈ ℝ ∧
((normℎ‘(𝑆‘𝐵))↑2) ∈ ℝ) →
((((normℎ‘(𝑆‘𝐴))↑2) +
((normℎ‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1 ↔
(((normℎ‘(𝑆‘𝐵))↑2) +
(((normℎ‘(𝑆‘𝐴))↑2) +
((normℎ‘(𝑆‘(⊥‘𝐵)))↑2))) ≤
(((normℎ‘(𝑆‘𝐵))↑2) + 1))) | 
| 57 | 54, 14, 56 | syl2anc 584 | . . . . . 6
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ 𝐵 ∈ Cℋ )
→ ((((normℎ‘(𝑆‘𝐴))↑2) +
((normℎ‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1 ↔
(((normℎ‘(𝑆‘𝐵))↑2) +
(((normℎ‘(𝑆‘𝐴))↑2) +
((normℎ‘(𝑆‘(⊥‘𝐵)))↑2))) ≤
(((normℎ‘(𝑆‘𝐵))↑2) + 1))) | 
| 58 | 57 | adantrr 717 | . . . . 5
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ (𝐵 ∈ Cℋ
∧ 𝐴 ⊆ 𝐵)) →
((((normℎ‘(𝑆‘𝐴))↑2) +
((normℎ‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1 ↔
(((normℎ‘(𝑆‘𝐵))↑2) +
(((normℎ‘(𝑆‘𝐴))↑2) +
((normℎ‘(𝑆‘(⊥‘𝐵)))↑2))) ≤
(((normℎ‘(𝑆‘𝐵))↑2) + 1))) | 
| 59 | 53, 58 | mpbid 232 | . . . 4
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ (𝐵 ∈ Cℋ
∧ 𝐴 ⊆ 𝐵)) →
(((normℎ‘(𝑆‘𝐵))↑2) +
(((normℎ‘(𝑆‘𝐴))↑2) +
((normℎ‘(𝑆‘(⊥‘𝐵)))↑2))) ≤
(((normℎ‘(𝑆‘𝐵))↑2) + 1)) | 
| 60 | 26, 59 | eqbrtrd 5164 | . . 3
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ (𝐵 ∈ Cℋ
∧ 𝐴 ⊆ 𝐵)) →
(((normℎ‘(𝑆‘𝐴))↑2) + 1) ≤
(((normℎ‘(𝑆‘𝐵))↑2) + 1)) | 
| 61 |  | leadd1 11732 | . . . . . 6
⊢
((((normℎ‘(𝑆‘𝐴))↑2) ∈ ℝ ∧
((normℎ‘(𝑆‘𝐵))↑2) ∈ ℝ ∧ 1 ∈
ℝ) → (((normℎ‘(𝑆‘𝐴))↑2) ≤
((normℎ‘(𝑆‘𝐵))↑2) ↔
(((normℎ‘(𝑆‘𝐴))↑2) + 1) ≤
(((normℎ‘(𝑆‘𝐵))↑2) + 1))) | 
| 62 | 46, 61 | mp3an3 1451 | . . . . 5
⊢
((((normℎ‘(𝑆‘𝐴))↑2) ∈ ℝ ∧
((normℎ‘(𝑆‘𝐵))↑2) ∈ ℝ) →
(((normℎ‘(𝑆‘𝐴))↑2) ≤
((normℎ‘(𝑆‘𝐵))↑2) ↔
(((normℎ‘(𝑆‘𝐴))↑2) + 1) ≤
(((normℎ‘(𝑆‘𝐵))↑2) + 1))) | 
| 63 | 8, 14, 62 | syl2anc 584 | . . . 4
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ 𝐵 ∈ Cℋ )
→ (((normℎ‘(𝑆‘𝐴))↑2) ≤
((normℎ‘(𝑆‘𝐵))↑2) ↔
(((normℎ‘(𝑆‘𝐴))↑2) + 1) ≤
(((normℎ‘(𝑆‘𝐵))↑2) + 1))) | 
| 64 | 63 | adantrr 717 | . . 3
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ (𝐵 ∈ Cℋ
∧ 𝐴 ⊆ 𝐵)) →
(((normℎ‘(𝑆‘𝐴))↑2) ≤
((normℎ‘(𝑆‘𝐵))↑2) ↔
(((normℎ‘(𝑆‘𝐴))↑2) + 1) ≤
(((normℎ‘(𝑆‘𝐵))↑2) + 1))) | 
| 65 | 60, 64 | mpbird 257 | . 2
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ (𝐵 ∈ Cℋ
∧ 𝐴 ⊆ 𝐵)) →
((normℎ‘(𝑆‘𝐴))↑2) ≤
((normℎ‘(𝑆‘𝐵))↑2)) | 
| 66 |  | normge0 31146 | . . . . . . 7
⊢ ((𝑆‘𝐴) ∈ ℋ → 0 ≤
(normℎ‘(𝑆‘𝐴))) | 
| 67 | 4, 66 | syl 17 | . . . . . 6
⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) → 0 ≤
(normℎ‘(𝑆‘𝐴))) | 
| 68 | 6, 67 | jca 511 | . . . . 5
⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) →
((normℎ‘(𝑆‘𝐴)) ∈ ℝ ∧ 0 ≤
(normℎ‘(𝑆‘𝐴)))) | 
| 69 | 68 | adantr 480 | . . . 4
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ 𝐵 ∈ Cℋ )
→ ((normℎ‘(𝑆‘𝐴)) ∈ ℝ ∧ 0 ≤
(normℎ‘(𝑆‘𝐴)))) | 
| 70 |  | normge0 31146 | . . . . . . 7
⊢ ((𝑆‘𝐵) ∈ ℋ → 0 ≤
(normℎ‘(𝑆‘𝐵))) | 
| 71 | 10, 70 | syl 17 | . . . . . 6
⊢ ((𝑆 ∈ CHStates ∧ 𝐵 ∈
Cℋ ) → 0 ≤
(normℎ‘(𝑆‘𝐵))) | 
| 72 | 12, 71 | jca 511 | . . . . 5
⊢ ((𝑆 ∈ CHStates ∧ 𝐵 ∈
Cℋ ) →
((normℎ‘(𝑆‘𝐵)) ∈ ℝ ∧ 0 ≤
(normℎ‘(𝑆‘𝐵)))) | 
| 73 | 72 | adantlr 715 | . . . 4
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ 𝐵 ∈ Cℋ )
→ ((normℎ‘(𝑆‘𝐵)) ∈ ℝ ∧ 0 ≤
(normℎ‘(𝑆‘𝐵)))) | 
| 74 |  | le2sq 14175 | . . . 4
⊢
((((normℎ‘(𝑆‘𝐴)) ∈ ℝ ∧ 0 ≤
(normℎ‘(𝑆‘𝐴))) ∧
((normℎ‘(𝑆‘𝐵)) ∈ ℝ ∧ 0 ≤
(normℎ‘(𝑆‘𝐵)))) →
((normℎ‘(𝑆‘𝐴)) ≤
(normℎ‘(𝑆‘𝐵)) ↔
((normℎ‘(𝑆‘𝐴))↑2) ≤
((normℎ‘(𝑆‘𝐵))↑2))) | 
| 75 | 69, 73, 74 | syl2anc 584 | . . 3
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ 𝐵 ∈ Cℋ )
→ ((normℎ‘(𝑆‘𝐴)) ≤
(normℎ‘(𝑆‘𝐵)) ↔
((normℎ‘(𝑆‘𝐴))↑2) ≤
((normℎ‘(𝑆‘𝐵))↑2))) | 
| 76 | 75 | adantrr 717 | . 2
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ (𝐵 ∈ Cℋ
∧ 𝐴 ⊆ 𝐵)) →
((normℎ‘(𝑆‘𝐴)) ≤
(normℎ‘(𝑆‘𝐵)) ↔
((normℎ‘(𝑆‘𝐴))↑2) ≤
((normℎ‘(𝑆‘𝐵))↑2))) | 
| 77 | 65, 76 | mpbird 257 | 1
⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈
Cℋ ) ∧ (𝐵 ∈ Cℋ
∧ 𝐴 ⊆ 𝐵)) →
(normℎ‘(𝑆‘𝐴)) ≤
(normℎ‘(𝑆‘𝐵))) |