MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mposn Structured version   Visualization version   GIF version

Theorem mposn 8102
Description: An operation (in maps-to notation) on two singletons. (Contributed by AV, 4-Aug-2019.)
Hypotheses
Ref Expression
mposn.f 𝐹 = (𝑥 ∈ {𝐴}, 𝑦 ∈ {𝐵} ↦ 𝐶)
mposn.a (𝑥 = 𝐴𝐶 = 𝐷)
mposn.b (𝑦 = 𝐵𝐷 = 𝐸)
Assertion
Ref Expression
mposn ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐹 = {⟨⟨𝐴, 𝐵⟩, 𝐸⟩})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐸,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mposn
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 xpsng 7129 . . . 4 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
213adant3 1132 . . 3 ((𝐴𝑉𝐵𝑊𝐸𝑈) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
32mpteq1d 5210 . 2 ((𝐴𝑉𝐵𝑊𝐸𝑈) → (𝑝 ∈ ({𝐴} × {𝐵}) ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶) = (𝑝 ∈ {⟨𝐴, 𝐵⟩} ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶))
4 mposn.f . . . 4 𝐹 = (𝑥 ∈ {𝐴}, 𝑦 ∈ {𝐵} ↦ 𝐶)
5 mpompts 8064 . . . 4 (𝑥 ∈ {𝐴}, 𝑦 ∈ {𝐵} ↦ 𝐶) = (𝑝 ∈ ({𝐴} × {𝐵}) ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶)
64, 5eqtri 2758 . . 3 𝐹 = (𝑝 ∈ ({𝐴} × {𝐵}) ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶)
76a1i 11 . 2 ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐹 = (𝑝 ∈ ({𝐴} × {𝐵}) ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶))
8 op2ndg 8001 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
9 fveq2 6876 . . . . . . . . 9 (𝑝 = ⟨𝐴, 𝐵⟩ → (2nd𝑝) = (2nd ‘⟨𝐴, 𝐵⟩))
109eqcomd 2741 . . . . . . . 8 (𝑝 = ⟨𝐴, 𝐵⟩ → (2nd ‘⟨𝐴, 𝐵⟩) = (2nd𝑝))
1110eqeq1d 2737 . . . . . . 7 (𝑝 = ⟨𝐴, 𝐵⟩ → ((2nd ‘⟨𝐴, 𝐵⟩) = 𝐵 ↔ (2nd𝑝) = 𝐵))
128, 11syl5ibcom 245 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝑝 = ⟨𝐴, 𝐵⟩ → (2nd𝑝) = 𝐵))
13123adant3 1132 . . . . 5 ((𝐴𝑉𝐵𝑊𝐸𝑈) → (𝑝 = ⟨𝐴, 𝐵⟩ → (2nd𝑝) = 𝐵))
1413imp 406 . . . 4 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑝 = ⟨𝐴, 𝐵⟩) → (2nd𝑝) = 𝐵)
15 op1stg 8000 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
16 fveq2 6876 . . . . . . . . 9 (𝑝 = ⟨𝐴, 𝐵⟩ → (1st𝑝) = (1st ‘⟨𝐴, 𝐵⟩))
1716eqcomd 2741 . . . . . . . 8 (𝑝 = ⟨𝐴, 𝐵⟩ → (1st ‘⟨𝐴, 𝐵⟩) = (1st𝑝))
1817eqeq1d 2737 . . . . . . 7 (𝑝 = ⟨𝐴, 𝐵⟩ → ((1st ‘⟨𝐴, 𝐵⟩) = 𝐴 ↔ (1st𝑝) = 𝐴))
1915, 18syl5ibcom 245 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝑝 = ⟨𝐴, 𝐵⟩ → (1st𝑝) = 𝐴))
20193adant3 1132 . . . . 5 ((𝐴𝑉𝐵𝑊𝐸𝑈) → (𝑝 = ⟨𝐴, 𝐵⟩ → (1st𝑝) = 𝐴))
2120imp 406 . . . 4 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑝 = ⟨𝐴, 𝐵⟩) → (1st𝑝) = 𝐴)
22 simp1 1136 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐴𝑉)
23 simpl2 1193 . . . . . . . 8 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑥 = 𝐴) → 𝐵𝑊)
24 mposn.a . . . . . . . . . 10 (𝑥 = 𝐴𝐶 = 𝐷)
2524adantl 481 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷)
26 mposn.b . . . . . . . . 9 (𝑦 = 𝐵𝐷 = 𝐸)
2725, 26sylan9eq 2790 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐸)
2823, 27csbied 3910 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑥 = 𝐴) → 𝐵 / 𝑦𝐶 = 𝐸)
2922, 28csbied 3910 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐸)
3029adantr 480 . . . . 5 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑝 = ⟨𝐴, 𝐵⟩) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐸)
31 csbeq1 3877 . . . . . . . 8 ((1st𝑝) = 𝐴(1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐴 / 𝑥(2nd𝑝) / 𝑦𝐶)
3231eqeq1d 2737 . . . . . . 7 ((1st𝑝) = 𝐴 → ((1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸𝐴 / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸))
3332adantl 481 . . . . . 6 (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → ((1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸𝐴 / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸))
34 csbeq1 3877 . . . . . . . . 9 ((2nd𝑝) = 𝐵(2nd𝑝) / 𝑦𝐶 = 𝐵 / 𝑦𝐶)
3534adantr 480 . . . . . . . 8 (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → (2nd𝑝) / 𝑦𝐶 = 𝐵 / 𝑦𝐶)
3635csbeq2dv 3881 . . . . . . 7 (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → 𝐴 / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
3736eqeq1d 2737 . . . . . 6 (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → (𝐴 / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐸))
3833, 37bitrd 279 . . . . 5 (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → ((1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐸))
3930, 38syl5ibrcom 247 . . . 4 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑝 = ⟨𝐴, 𝐵⟩) → (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸))
4014, 21, 39mp2and 699 . . 3 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑝 = ⟨𝐴, 𝐵⟩) → (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸)
41 opex 5439 . . . 4 𝐴, 𝐵⟩ ∈ V
4241a1i 11 . . 3 ((𝐴𝑉𝐵𝑊𝐸𝑈) → ⟨𝐴, 𝐵⟩ ∈ V)
43 simp3 1138 . . 3 ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐸𝑈)
4440, 42, 43fmptsnd 7161 . 2 ((𝐴𝑉𝐵𝑊𝐸𝑈) → {⟨⟨𝐴, 𝐵⟩, 𝐸⟩} = (𝑝 ∈ {⟨𝐴, 𝐵⟩} ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶))
453, 7, 443eqtr4d 2780 1 ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐹 = {⟨⟨𝐴, 𝐵⟩, 𝐸⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  csb 3874  {csn 4601  cop 4607  cmpt 5201   × cxp 5652  cfv 6531  cmpo 7407  1st c1st 7986  2nd c2nd 7987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989
This theorem is referenced by:  mat1dim0  22411  mat1dimid  22412  mat1dimmul  22414  d1mat2pmat  22677  setc1ohomfval  49378  setc1ocofval  49379  diag1f1olem  49418
  Copyright terms: Public domain W3C validator