MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mposn Structured version   Visualization version   GIF version

Theorem mposn 8033
Description: An operation (in maps-to notation) on two singletons. (Contributed by AV, 4-Aug-2019.)
Hypotheses
Ref Expression
mposn.f 𝐹 = (𝑥 ∈ {𝐴}, 𝑦 ∈ {𝐵} ↦ 𝐶)
mposn.a (𝑥 = 𝐴𝐶 = 𝐷)
mposn.b (𝑦 = 𝐵𝐷 = 𝐸)
Assertion
Ref Expression
mposn ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐹 = {⟨⟨𝐴, 𝐵⟩, 𝐸⟩})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐸,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mposn
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 xpsng 7072 . . . 4 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
213adant3 1132 . . 3 ((𝐴𝑉𝐵𝑊𝐸𝑈) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
32mpteq1d 5181 . 2 ((𝐴𝑉𝐵𝑊𝐸𝑈) → (𝑝 ∈ ({𝐴} × {𝐵}) ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶) = (𝑝 ∈ {⟨𝐴, 𝐵⟩} ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶))
4 mposn.f . . . 4 𝐹 = (𝑥 ∈ {𝐴}, 𝑦 ∈ {𝐵} ↦ 𝐶)
5 mpompts 7997 . . . 4 (𝑥 ∈ {𝐴}, 𝑦 ∈ {𝐵} ↦ 𝐶) = (𝑝 ∈ ({𝐴} × {𝐵}) ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶)
64, 5eqtri 2754 . . 3 𝐹 = (𝑝 ∈ ({𝐴} × {𝐵}) ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶)
76a1i 11 . 2 ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐹 = (𝑝 ∈ ({𝐴} × {𝐵}) ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶))
8 op2ndg 7934 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
9 fveq2 6822 . . . . . . . . 9 (𝑝 = ⟨𝐴, 𝐵⟩ → (2nd𝑝) = (2nd ‘⟨𝐴, 𝐵⟩))
109eqcomd 2737 . . . . . . . 8 (𝑝 = ⟨𝐴, 𝐵⟩ → (2nd ‘⟨𝐴, 𝐵⟩) = (2nd𝑝))
1110eqeq1d 2733 . . . . . . 7 (𝑝 = ⟨𝐴, 𝐵⟩ → ((2nd ‘⟨𝐴, 𝐵⟩) = 𝐵 ↔ (2nd𝑝) = 𝐵))
128, 11syl5ibcom 245 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝑝 = ⟨𝐴, 𝐵⟩ → (2nd𝑝) = 𝐵))
13123adant3 1132 . . . . 5 ((𝐴𝑉𝐵𝑊𝐸𝑈) → (𝑝 = ⟨𝐴, 𝐵⟩ → (2nd𝑝) = 𝐵))
1413imp 406 . . . 4 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑝 = ⟨𝐴, 𝐵⟩) → (2nd𝑝) = 𝐵)
15 op1stg 7933 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
16 fveq2 6822 . . . . . . . . 9 (𝑝 = ⟨𝐴, 𝐵⟩ → (1st𝑝) = (1st ‘⟨𝐴, 𝐵⟩))
1716eqcomd 2737 . . . . . . . 8 (𝑝 = ⟨𝐴, 𝐵⟩ → (1st ‘⟨𝐴, 𝐵⟩) = (1st𝑝))
1817eqeq1d 2733 . . . . . . 7 (𝑝 = ⟨𝐴, 𝐵⟩ → ((1st ‘⟨𝐴, 𝐵⟩) = 𝐴 ↔ (1st𝑝) = 𝐴))
1915, 18syl5ibcom 245 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝑝 = ⟨𝐴, 𝐵⟩ → (1st𝑝) = 𝐴))
20193adant3 1132 . . . . 5 ((𝐴𝑉𝐵𝑊𝐸𝑈) → (𝑝 = ⟨𝐴, 𝐵⟩ → (1st𝑝) = 𝐴))
2120imp 406 . . . 4 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑝 = ⟨𝐴, 𝐵⟩) → (1st𝑝) = 𝐴)
22 simp1 1136 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐴𝑉)
23 simpl2 1193 . . . . . . . 8 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑥 = 𝐴) → 𝐵𝑊)
24 mposn.a . . . . . . . . . 10 (𝑥 = 𝐴𝐶 = 𝐷)
2524adantl 481 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷)
26 mposn.b . . . . . . . . 9 (𝑦 = 𝐵𝐷 = 𝐸)
2725, 26sylan9eq 2786 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐸)
2823, 27csbied 3886 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑥 = 𝐴) → 𝐵 / 𝑦𝐶 = 𝐸)
2922, 28csbied 3886 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐸)
3029adantr 480 . . . . 5 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑝 = ⟨𝐴, 𝐵⟩) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐸)
31 csbeq1 3853 . . . . . . . 8 ((1st𝑝) = 𝐴(1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐴 / 𝑥(2nd𝑝) / 𝑦𝐶)
3231eqeq1d 2733 . . . . . . 7 ((1st𝑝) = 𝐴 → ((1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸𝐴 / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸))
3332adantl 481 . . . . . 6 (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → ((1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸𝐴 / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸))
34 csbeq1 3853 . . . . . . . . 9 ((2nd𝑝) = 𝐵(2nd𝑝) / 𝑦𝐶 = 𝐵 / 𝑦𝐶)
3534adantr 480 . . . . . . . 8 (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → (2nd𝑝) / 𝑦𝐶 = 𝐵 / 𝑦𝐶)
3635csbeq2dv 3857 . . . . . . 7 (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → 𝐴 / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
3736eqeq1d 2733 . . . . . 6 (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → (𝐴 / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐸))
3833, 37bitrd 279 . . . . 5 (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → ((1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐸))
3930, 38syl5ibrcom 247 . . . 4 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑝 = ⟨𝐴, 𝐵⟩) → (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸))
4014, 21, 39mp2and 699 . . 3 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑝 = ⟨𝐴, 𝐵⟩) → (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸)
41 opex 5404 . . . 4 𝐴, 𝐵⟩ ∈ V
4241a1i 11 . . 3 ((𝐴𝑉𝐵𝑊𝐸𝑈) → ⟨𝐴, 𝐵⟩ ∈ V)
43 simp3 1138 . . 3 ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐸𝑈)
4440, 42, 43fmptsnd 7103 . 2 ((𝐴𝑉𝐵𝑊𝐸𝑈) → {⟨⟨𝐴, 𝐵⟩, 𝐸⟩} = (𝑝 ∈ {⟨𝐴, 𝐵⟩} ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶))
453, 7, 443eqtr4d 2776 1 ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐹 = {⟨⟨𝐴, 𝐵⟩, 𝐸⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  csb 3850  {csn 4576  cop 4582  cmpt 5172   × cxp 5614  cfv 6481  cmpo 7348  1st c1st 7919  2nd c2nd 7920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922
This theorem is referenced by:  mat1dim0  22389  mat1dimid  22390  mat1dimmul  22392  d1mat2pmat  22655  setc1ohomfval  49531  setc1ocofval  49532  diag1f1olem  49571
  Copyright terms: Public domain W3C validator