MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mposn Structured version   Visualization version   GIF version

Theorem mposn 7927
Description: An operation (in maps-to notation) on two singletons. (Contributed by AV, 4-Aug-2019.)
Hypotheses
Ref Expression
mposn.f 𝐹 = (𝑥 ∈ {𝐴}, 𝑦 ∈ {𝐵} ↦ 𝐶)
mposn.a (𝑥 = 𝐴𝐶 = 𝐷)
mposn.b (𝑦 = 𝐵𝐷 = 𝐸)
Assertion
Ref Expression
mposn ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐹 = {⟨⟨𝐴, 𝐵⟩, 𝐸⟩})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐸,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mposn
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 xpsng 7005 . . . 4 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
213adant3 1130 . . 3 ((𝐴𝑉𝐵𝑊𝐸𝑈) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
32mpteq1d 5173 . 2 ((𝐴𝑉𝐵𝑊𝐸𝑈) → (𝑝 ∈ ({𝐴} × {𝐵}) ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶) = (𝑝 ∈ {⟨𝐴, 𝐵⟩} ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶))
4 mposn.f . . . 4 𝐹 = (𝑥 ∈ {𝐴}, 𝑦 ∈ {𝐵} ↦ 𝐶)
5 mpompts 7891 . . . 4 (𝑥 ∈ {𝐴}, 𝑦 ∈ {𝐵} ↦ 𝐶) = (𝑝 ∈ ({𝐴} × {𝐵}) ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶)
64, 5eqtri 2767 . . 3 𝐹 = (𝑝 ∈ ({𝐴} × {𝐵}) ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶)
76a1i 11 . 2 ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐹 = (𝑝 ∈ ({𝐴} × {𝐵}) ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶))
8 op2ndg 7830 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
9 fveq2 6768 . . . . . . . . 9 (𝑝 = ⟨𝐴, 𝐵⟩ → (2nd𝑝) = (2nd ‘⟨𝐴, 𝐵⟩))
109eqcomd 2745 . . . . . . . 8 (𝑝 = ⟨𝐴, 𝐵⟩ → (2nd ‘⟨𝐴, 𝐵⟩) = (2nd𝑝))
1110eqeq1d 2741 . . . . . . 7 (𝑝 = ⟨𝐴, 𝐵⟩ → ((2nd ‘⟨𝐴, 𝐵⟩) = 𝐵 ↔ (2nd𝑝) = 𝐵))
128, 11syl5ibcom 244 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝑝 = ⟨𝐴, 𝐵⟩ → (2nd𝑝) = 𝐵))
13123adant3 1130 . . . . 5 ((𝐴𝑉𝐵𝑊𝐸𝑈) → (𝑝 = ⟨𝐴, 𝐵⟩ → (2nd𝑝) = 𝐵))
1413imp 406 . . . 4 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑝 = ⟨𝐴, 𝐵⟩) → (2nd𝑝) = 𝐵)
15 op1stg 7829 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
16 fveq2 6768 . . . . . . . . 9 (𝑝 = ⟨𝐴, 𝐵⟩ → (1st𝑝) = (1st ‘⟨𝐴, 𝐵⟩))
1716eqcomd 2745 . . . . . . . 8 (𝑝 = ⟨𝐴, 𝐵⟩ → (1st ‘⟨𝐴, 𝐵⟩) = (1st𝑝))
1817eqeq1d 2741 . . . . . . 7 (𝑝 = ⟨𝐴, 𝐵⟩ → ((1st ‘⟨𝐴, 𝐵⟩) = 𝐴 ↔ (1st𝑝) = 𝐴))
1915, 18syl5ibcom 244 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝑝 = ⟨𝐴, 𝐵⟩ → (1st𝑝) = 𝐴))
20193adant3 1130 . . . . 5 ((𝐴𝑉𝐵𝑊𝐸𝑈) → (𝑝 = ⟨𝐴, 𝐵⟩ → (1st𝑝) = 𝐴))
2120imp 406 . . . 4 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑝 = ⟨𝐴, 𝐵⟩) → (1st𝑝) = 𝐴)
22 simp1 1134 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐴𝑉)
23 simpl2 1190 . . . . . . . 8 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑥 = 𝐴) → 𝐵𝑊)
24 mposn.a . . . . . . . . . 10 (𝑥 = 𝐴𝐶 = 𝐷)
2524adantl 481 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷)
26 mposn.b . . . . . . . . 9 (𝑦 = 𝐵𝐷 = 𝐸)
2725, 26sylan9eq 2799 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐸)
2823, 27csbied 3874 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑥 = 𝐴) → 𝐵 / 𝑦𝐶 = 𝐸)
2922, 28csbied 3874 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐸)
3029adantr 480 . . . . 5 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑝 = ⟨𝐴, 𝐵⟩) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐸)
31 csbeq1 3839 . . . . . . . 8 ((1st𝑝) = 𝐴(1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐴 / 𝑥(2nd𝑝) / 𝑦𝐶)
3231eqeq1d 2741 . . . . . . 7 ((1st𝑝) = 𝐴 → ((1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸𝐴 / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸))
3332adantl 481 . . . . . 6 (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → ((1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸𝐴 / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸))
34 csbeq1 3839 . . . . . . . . 9 ((2nd𝑝) = 𝐵(2nd𝑝) / 𝑦𝐶 = 𝐵 / 𝑦𝐶)
3534adantr 480 . . . . . . . 8 (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → (2nd𝑝) / 𝑦𝐶 = 𝐵 / 𝑦𝐶)
3635csbeq2dv 3843 . . . . . . 7 (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → 𝐴 / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
3736eqeq1d 2741 . . . . . 6 (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → (𝐴 / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐸))
3833, 37bitrd 278 . . . . 5 (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → ((1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐸))
3930, 38syl5ibrcom 246 . . . 4 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑝 = ⟨𝐴, 𝐵⟩) → (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸))
4014, 21, 39mp2and 695 . . 3 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑝 = ⟨𝐴, 𝐵⟩) → (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸)
41 opex 5381 . . . 4 𝐴, 𝐵⟩ ∈ V
4241a1i 11 . . 3 ((𝐴𝑉𝐵𝑊𝐸𝑈) → ⟨𝐴, 𝐵⟩ ∈ V)
43 simp3 1136 . . 3 ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐸𝑈)
4440, 42, 43fmptsnd 7035 . 2 ((𝐴𝑉𝐵𝑊𝐸𝑈) → {⟨⟨𝐴, 𝐵⟩, 𝐸⟩} = (𝑝 ∈ {⟨𝐴, 𝐵⟩} ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶))
453, 7, 443eqtr4d 2789 1 ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐹 = {⟨⟨𝐴, 𝐵⟩, 𝐸⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  Vcvv 3430  csb 3836  {csn 4566  cop 4572  cmpt 5161   × cxp 5586  cfv 6430  cmpo 7270  1st c1st 7815  2nd c2nd 7816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818
This theorem is referenced by:  mat1dim0  21603  mat1dimid  21604  mat1dimmul  21606  d1mat2pmat  21869
  Copyright terms: Public domain W3C validator