Step | Hyp | Ref
| Expression |
1 | | xpsng 7005 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) |
2 | 1 | 3adant3 1130 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈) → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) |
3 | 2 | mpteq1d 5173 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈) → (𝑝 ∈ ({𝐴} × {𝐵}) ↦ ⦋(1st
‘𝑝) / 𝑥⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐶) = (𝑝 ∈ {〈𝐴, 𝐵〉} ↦
⦋(1st ‘𝑝) / 𝑥⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐶)) |
4 | | mposn.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ {𝐴}, 𝑦 ∈ {𝐵} ↦ 𝐶) |
5 | | mpompts 7891 |
. . . 4
⊢ (𝑥 ∈ {𝐴}, 𝑦 ∈ {𝐵} ↦ 𝐶) = (𝑝 ∈ ({𝐴} × {𝐵}) ↦ ⦋(1st
‘𝑝) / 𝑥⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐶) |
6 | 4, 5 | eqtri 2767 |
. . 3
⊢ 𝐹 = (𝑝 ∈ ({𝐴} × {𝐵}) ↦ ⦋(1st
‘𝑝) / 𝑥⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐶) |
7 | 6 | a1i 11 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈) → 𝐹 = (𝑝 ∈ ({𝐴} × {𝐵}) ↦ ⦋(1st
‘𝑝) / 𝑥⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐶)) |
8 | | op2ndg 7830 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
9 | | fveq2 6768 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝐴, 𝐵〉 → (2nd ‘𝑝) = (2nd
‘〈𝐴, 𝐵〉)) |
10 | 9 | eqcomd 2745 |
. . . . . . . 8
⊢ (𝑝 = 〈𝐴, 𝐵〉 → (2nd
‘〈𝐴, 𝐵〉) = (2nd
‘𝑝)) |
11 | 10 | eqeq1d 2741 |
. . . . . . 7
⊢ (𝑝 = 〈𝐴, 𝐵〉 → ((2nd
‘〈𝐴, 𝐵〉) = 𝐵 ↔ (2nd ‘𝑝) = 𝐵)) |
12 | 8, 11 | syl5ibcom 244 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑝 = 〈𝐴, 𝐵〉 → (2nd ‘𝑝) = 𝐵)) |
13 | 12 | 3adant3 1130 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈) → (𝑝 = 〈𝐴, 𝐵〉 → (2nd ‘𝑝) = 𝐵)) |
14 | 13 | imp 406 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈) ∧ 𝑝 = 〈𝐴, 𝐵〉) → (2nd ‘𝑝) = 𝐵) |
15 | | op1stg 7829 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
16 | | fveq2 6768 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝐴, 𝐵〉 → (1st ‘𝑝) = (1st
‘〈𝐴, 𝐵〉)) |
17 | 16 | eqcomd 2745 |
. . . . . . . 8
⊢ (𝑝 = 〈𝐴, 𝐵〉 → (1st
‘〈𝐴, 𝐵〉) = (1st
‘𝑝)) |
18 | 17 | eqeq1d 2741 |
. . . . . . 7
⊢ (𝑝 = 〈𝐴, 𝐵〉 → ((1st
‘〈𝐴, 𝐵〉) = 𝐴 ↔ (1st ‘𝑝) = 𝐴)) |
19 | 15, 18 | syl5ibcom 244 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑝 = 〈𝐴, 𝐵〉 → (1st ‘𝑝) = 𝐴)) |
20 | 19 | 3adant3 1130 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈) → (𝑝 = 〈𝐴, 𝐵〉 → (1st ‘𝑝) = 𝐴)) |
21 | 20 | imp 406 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈) ∧ 𝑝 = 〈𝐴, 𝐵〉) → (1st ‘𝑝) = 𝐴) |
22 | | simp1 1134 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈) → 𝐴 ∈ 𝑉) |
23 | | simpl2 1190 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈) ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑊) |
24 | | mposn.a |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) |
25 | 24 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈) ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) |
26 | | mposn.b |
. . . . . . . . 9
⊢ (𝑦 = 𝐵 → 𝐷 = 𝐸) |
27 | 25, 26 | sylan9eq 2799 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈) ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐸) |
28 | 23, 27 | csbied 3874 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈) ∧ 𝑥 = 𝐴) → ⦋𝐵 / 𝑦⦌𝐶 = 𝐸) |
29 | 22, 28 | csbied 3874 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐸) |
30 | 29 | adantr 480 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈) ∧ 𝑝 = 〈𝐴, 𝐵〉) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐸) |
31 | | csbeq1 3839 |
. . . . . . . 8
⊢
((1st ‘𝑝) = 𝐴 → ⦋(1st
‘𝑝) / 𝑥⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐶 = ⦋𝐴 / 𝑥⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐶) |
32 | 31 | eqeq1d 2741 |
. . . . . . 7
⊢
((1st ‘𝑝) = 𝐴 → (⦋(1st
‘𝑝) / 𝑥⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐶 = 𝐸 ↔ ⦋𝐴 / 𝑥⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐶 = 𝐸)) |
33 | 32 | adantl 481 |
. . . . . 6
⊢
(((2nd ‘𝑝) = 𝐵 ∧ (1st ‘𝑝) = 𝐴) → (⦋(1st
‘𝑝) / 𝑥⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐶 = 𝐸 ↔ ⦋𝐴 / 𝑥⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐶 = 𝐸)) |
34 | | csbeq1 3839 |
. . . . . . . . 9
⊢
((2nd ‘𝑝) = 𝐵 → ⦋(2nd
‘𝑝) / 𝑦⦌𝐶 = ⦋𝐵 / 𝑦⦌𝐶) |
35 | 34 | adantr 480 |
. . . . . . . 8
⊢
(((2nd ‘𝑝) = 𝐵 ∧ (1st ‘𝑝) = 𝐴) → ⦋(2nd
‘𝑝) / 𝑦⦌𝐶 = ⦋𝐵 / 𝑦⦌𝐶) |
36 | 35 | csbeq2dv 3843 |
. . . . . . 7
⊢
(((2nd ‘𝑝) = 𝐵 ∧ (1st ‘𝑝) = 𝐴) → ⦋𝐴 / 𝑥⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐶 = ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶) |
37 | 36 | eqeq1d 2741 |
. . . . . 6
⊢
(((2nd ‘𝑝) = 𝐵 ∧ (1st ‘𝑝) = 𝐴) → (⦋𝐴 / 𝑥⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐶 = 𝐸 ↔ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐸)) |
38 | 33, 37 | bitrd 278 |
. . . . 5
⊢
(((2nd ‘𝑝) = 𝐵 ∧ (1st ‘𝑝) = 𝐴) → (⦋(1st
‘𝑝) / 𝑥⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐶 = 𝐸 ↔ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐸)) |
39 | 30, 38 | syl5ibrcom 246 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈) ∧ 𝑝 = 〈𝐴, 𝐵〉) → (((2nd
‘𝑝) = 𝐵 ∧ (1st
‘𝑝) = 𝐴) →
⦋(1st ‘𝑝) / 𝑥⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐶 = 𝐸)) |
40 | 14, 21, 39 | mp2and 695 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈) ∧ 𝑝 = 〈𝐴, 𝐵〉) →
⦋(1st ‘𝑝) / 𝑥⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐶 = 𝐸) |
41 | | opex 5381 |
. . . 4
⊢
〈𝐴, 𝐵〉 ∈ V |
42 | 41 | a1i 11 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈) → 〈𝐴, 𝐵〉 ∈ V) |
43 | | simp3 1136 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈) → 𝐸 ∈ 𝑈) |
44 | 40, 42, 43 | fmptsnd 7035 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈) → {〈〈𝐴, 𝐵〉, 𝐸〉} = (𝑝 ∈ {〈𝐴, 𝐵〉} ↦
⦋(1st ‘𝑝) / 𝑥⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐶)) |
45 | 3, 7, 44 | 3eqtr4d 2789 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈) → 𝐹 = {〈〈𝐴, 𝐵〉, 𝐸〉}) |