MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mposn Structured version   Visualization version   GIF version

Theorem mposn 7975
Description: An operation (in maps-to notation) on two singletons. (Contributed by AV, 4-Aug-2019.)
Hypotheses
Ref Expression
mposn.f 𝐹 = (𝑥 ∈ {𝐴}, 𝑦 ∈ {𝐵} ↦ 𝐶)
mposn.a (𝑥 = 𝐴𝐶 = 𝐷)
mposn.b (𝑦 = 𝐵𝐷 = 𝐸)
Assertion
Ref Expression
mposn ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐹 = {⟨⟨𝐴, 𝐵⟩, 𝐸⟩})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐸,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mposn
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 xpsng 7043 . . . 4 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
213adant3 1132 . . 3 ((𝐴𝑉𝐵𝑊𝐸𝑈) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
32mpteq1d 5176 . 2 ((𝐴𝑉𝐵𝑊𝐸𝑈) → (𝑝 ∈ ({𝐴} × {𝐵}) ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶) = (𝑝 ∈ {⟨𝐴, 𝐵⟩} ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶))
4 mposn.f . . . 4 𝐹 = (𝑥 ∈ {𝐴}, 𝑦 ∈ {𝐵} ↦ 𝐶)
5 mpompts 7937 . . . 4 (𝑥 ∈ {𝐴}, 𝑦 ∈ {𝐵} ↦ 𝐶) = (𝑝 ∈ ({𝐴} × {𝐵}) ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶)
64, 5eqtri 2764 . . 3 𝐹 = (𝑝 ∈ ({𝐴} × {𝐵}) ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶)
76a1i 11 . 2 ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐹 = (𝑝 ∈ ({𝐴} × {𝐵}) ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶))
8 op2ndg 7876 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
9 fveq2 6804 . . . . . . . . 9 (𝑝 = ⟨𝐴, 𝐵⟩ → (2nd𝑝) = (2nd ‘⟨𝐴, 𝐵⟩))
109eqcomd 2742 . . . . . . . 8 (𝑝 = ⟨𝐴, 𝐵⟩ → (2nd ‘⟨𝐴, 𝐵⟩) = (2nd𝑝))
1110eqeq1d 2738 . . . . . . 7 (𝑝 = ⟨𝐴, 𝐵⟩ → ((2nd ‘⟨𝐴, 𝐵⟩) = 𝐵 ↔ (2nd𝑝) = 𝐵))
128, 11syl5ibcom 245 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝑝 = ⟨𝐴, 𝐵⟩ → (2nd𝑝) = 𝐵))
13123adant3 1132 . . . . 5 ((𝐴𝑉𝐵𝑊𝐸𝑈) → (𝑝 = ⟨𝐴, 𝐵⟩ → (2nd𝑝) = 𝐵))
1413imp 408 . . . 4 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑝 = ⟨𝐴, 𝐵⟩) → (2nd𝑝) = 𝐵)
15 op1stg 7875 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
16 fveq2 6804 . . . . . . . . 9 (𝑝 = ⟨𝐴, 𝐵⟩ → (1st𝑝) = (1st ‘⟨𝐴, 𝐵⟩))
1716eqcomd 2742 . . . . . . . 8 (𝑝 = ⟨𝐴, 𝐵⟩ → (1st ‘⟨𝐴, 𝐵⟩) = (1st𝑝))
1817eqeq1d 2738 . . . . . . 7 (𝑝 = ⟨𝐴, 𝐵⟩ → ((1st ‘⟨𝐴, 𝐵⟩) = 𝐴 ↔ (1st𝑝) = 𝐴))
1915, 18syl5ibcom 245 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝑝 = ⟨𝐴, 𝐵⟩ → (1st𝑝) = 𝐴))
20193adant3 1132 . . . . 5 ((𝐴𝑉𝐵𝑊𝐸𝑈) → (𝑝 = ⟨𝐴, 𝐵⟩ → (1st𝑝) = 𝐴))
2120imp 408 . . . 4 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑝 = ⟨𝐴, 𝐵⟩) → (1st𝑝) = 𝐴)
22 simp1 1136 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐴𝑉)
23 simpl2 1192 . . . . . . . 8 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑥 = 𝐴) → 𝐵𝑊)
24 mposn.a . . . . . . . . . 10 (𝑥 = 𝐴𝐶 = 𝐷)
2524adantl 483 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷)
26 mposn.b . . . . . . . . 9 (𝑦 = 𝐵𝐷 = 𝐸)
2725, 26sylan9eq 2796 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐸)
2823, 27csbied 3875 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑥 = 𝐴) → 𝐵 / 𝑦𝐶 = 𝐸)
2922, 28csbied 3875 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐸)
3029adantr 482 . . . . 5 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑝 = ⟨𝐴, 𝐵⟩) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐸)
31 csbeq1 3840 . . . . . . . 8 ((1st𝑝) = 𝐴(1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐴 / 𝑥(2nd𝑝) / 𝑦𝐶)
3231eqeq1d 2738 . . . . . . 7 ((1st𝑝) = 𝐴 → ((1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸𝐴 / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸))
3332adantl 483 . . . . . 6 (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → ((1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸𝐴 / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸))
34 csbeq1 3840 . . . . . . . . 9 ((2nd𝑝) = 𝐵(2nd𝑝) / 𝑦𝐶 = 𝐵 / 𝑦𝐶)
3534adantr 482 . . . . . . . 8 (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → (2nd𝑝) / 𝑦𝐶 = 𝐵 / 𝑦𝐶)
3635csbeq2dv 3844 . . . . . . 7 (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → 𝐴 / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
3736eqeq1d 2738 . . . . . 6 (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → (𝐴 / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐸))
3833, 37bitrd 279 . . . . 5 (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → ((1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐸))
3930, 38syl5ibrcom 247 . . . 4 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑝 = ⟨𝐴, 𝐵⟩) → (((2nd𝑝) = 𝐵 ∧ (1st𝑝) = 𝐴) → (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸))
4014, 21, 39mp2and 697 . . 3 (((𝐴𝑉𝐵𝑊𝐸𝑈) ∧ 𝑝 = ⟨𝐴, 𝐵⟩) → (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶 = 𝐸)
41 opex 5392 . . . 4 𝐴, 𝐵⟩ ∈ V
4241a1i 11 . . 3 ((𝐴𝑉𝐵𝑊𝐸𝑈) → ⟨𝐴, 𝐵⟩ ∈ V)
43 simp3 1138 . . 3 ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐸𝑈)
4440, 42, 43fmptsnd 7073 . 2 ((𝐴𝑉𝐵𝑊𝐸𝑈) → {⟨⟨𝐴, 𝐵⟩, 𝐸⟩} = (𝑝 ∈ {⟨𝐴, 𝐵⟩} ↦ (1st𝑝) / 𝑥(2nd𝑝) / 𝑦𝐶))
453, 7, 443eqtr4d 2786 1 ((𝐴𝑉𝐵𝑊𝐸𝑈) → 𝐹 = {⟨⟨𝐴, 𝐵⟩, 𝐸⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1539  wcel 2104  Vcvv 3437  csb 3837  {csn 4565  cop 4571  cmpt 5164   × cxp 5598  cfv 6458  cmpo 7309  1st c1st 7861  2nd c2nd 7862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-oprab 7311  df-mpo 7312  df-1st 7863  df-2nd 7864
This theorem is referenced by:  mat1dim0  21667  mat1dimid  21668  mat1dimmul  21670  d1mat2pmat  21933
  Copyright terms: Public domain W3C validator