MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mress Structured version   Visualization version   GIF version

Theorem mress 16970
Description: A Moore-closed subset is a subset. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Assertion
Ref Expression
mress ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆𝑋)

Proof of Theorem mress
StepHypRef Expression
1 mresspw 16969 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)
21sselda 3878 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆 ∈ 𝒫 𝑋)
32elpwid 4500 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2114  wss 3844  𝒫 cpw 4489  cfv 6340  Moorecmre 16959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3401  df-sbc 3682  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-iota 6298  df-fun 6342  df-fv 6348  df-mre 16963
This theorem is referenced by:  mreriincl  16975  mrcid  16990  mrcsscl  16997  submrc  17005  acsfiel  17031  mrelatglb0  17914  isnacs3  40127
  Copyright terms: Public domain W3C validator