![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mress | Structured version Visualization version GIF version |
Description: A Moore-closed subset is a subset. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mress | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → 𝑆 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mresspw 17575 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋) | |
2 | 1 | sselda 3976 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → 𝑆 ∈ 𝒫 𝑋) |
3 | 2 | elpwid 4613 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → 𝑆 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ⊆ wss 3944 𝒫 cpw 4604 ‘cfv 6549 Moorecmre 17565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6501 df-fun 6551 df-fv 6557 df-mre 17569 |
This theorem is referenced by: mreriincl 17581 mrcid 17596 mrcsscl 17603 submrc 17611 acsfiel 17637 mrelatglb0 18556 isnacs3 42272 |
Copyright terms: Public domain | W3C validator |