MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfiel Structured version   Visualization version   GIF version

Theorem acsfiel 17363
Description: A set is closed in an algebraic closure system iff it contains all closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
isacs2.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
acsfiel (𝐶 ∈ (ACS‘𝑋) → (𝑆𝐶 ↔ (𝑆𝑋 ∧ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹𝑦) ⊆ 𝑆)))
Distinct variable groups:   𝑦,𝐶   𝑦,𝐹   𝑦,𝑆   𝑦,𝑋

Proof of Theorem acsfiel
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 acsmre 17361 . . . . 5 (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋))
2 mress 17302 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆𝑋)
31, 2sylan 580 . . . 4 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆𝐶) → 𝑆𝑋)
43ex 413 . . 3 (𝐶 ∈ (ACS‘𝑋) → (𝑆𝐶𝑆𝑋))
54pm4.71rd 563 . 2 (𝐶 ∈ (ACS‘𝑋) → (𝑆𝐶 ↔ (𝑆𝑋𝑆𝐶)))
6 eleq1 2826 . . . . 5 (𝑠 = 𝑆 → (𝑠𝐶𝑆𝐶))
7 pweq 4549 . . . . . . 7 (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆)
87ineq1d 4145 . . . . . 6 (𝑠 = 𝑆 → (𝒫 𝑠 ∩ Fin) = (𝒫 𝑆 ∩ Fin))
9 sseq2 3947 . . . . . 6 (𝑠 = 𝑆 → ((𝐹𝑦) ⊆ 𝑠 ↔ (𝐹𝑦) ⊆ 𝑆))
108, 9raleqbidv 3336 . . . . 5 (𝑠 = 𝑆 → (∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠 ↔ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹𝑦) ⊆ 𝑆))
116, 10bibi12d 346 . . . 4 (𝑠 = 𝑆 → ((𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠) ↔ (𝑆𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹𝑦) ⊆ 𝑆)))
12 isacs2.f . . . . . . 7 𝐹 = (mrCls‘𝐶)
1312isacs2 17362 . . . . . 6 (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
1413simprbi 497 . . . . 5 (𝐶 ∈ (ACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠))
1514adantr 481 . . . 4 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆𝑋) → ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠))
16 elfvdm 6806 . . . . . 6 (𝐶 ∈ (ACS‘𝑋) → 𝑋 ∈ dom ACS)
17 elpw2g 5268 . . . . . 6 (𝑋 ∈ dom ACS → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1816, 17syl 17 . . . . 5 (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1918biimpar 478 . . . 4 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆𝑋) → 𝑆 ∈ 𝒫 𝑋)
2011, 15, 19rspcdva 3562 . . 3 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆𝑋) → (𝑆𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹𝑦) ⊆ 𝑆))
2120pm5.32da 579 . 2 (𝐶 ∈ (ACS‘𝑋) → ((𝑆𝑋𝑆𝐶) ↔ (𝑆𝑋 ∧ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹𝑦) ⊆ 𝑆)))
225, 21bitrd 278 1 (𝐶 ∈ (ACS‘𝑋) → (𝑆𝐶 ↔ (𝑆𝑋 ∧ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹𝑦) ⊆ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  cin 3886  wss 3887  𝒫 cpw 4533  dom cdm 5589  cfv 6433  Fincfn 8733  Moorecmre 17291  mrClscmrc 17292  ACScacs 17294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-mre 17295  df-mrc 17296  df-acs 17298
This theorem is referenced by:  acsfiel2  17364  isacs3lem  18260
  Copyright terms: Public domain W3C validator