|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > acsfiel | Structured version Visualization version GIF version | ||
| Description: A set is closed in an algebraic closure system iff it contains all closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| isacs2.f | ⊢ 𝐹 = (mrCls‘𝐶) | 
| Ref | Expression | 
|---|---|
| acsfiel | ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝐶 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | acsmre 17695 | . . . . 5 ⊢ (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋)) | |
| 2 | mress 17636 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → 𝑆 ⊆ 𝑋) | |
| 3 | 1, 2 | sylan 580 | . . . 4 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ∈ 𝐶) → 𝑆 ⊆ 𝑋) | 
| 4 | 3 | ex 412 | . . 3 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑋)) | 
| 5 | 4 | pm4.71rd 562 | . 2 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝐶 ↔ (𝑆 ⊆ 𝑋 ∧ 𝑆 ∈ 𝐶))) | 
| 6 | eleq1 2829 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑠 ∈ 𝐶 ↔ 𝑆 ∈ 𝐶)) | |
| 7 | pweq 4614 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆) | |
| 8 | 7 | ineq1d 4219 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝒫 𝑠 ∩ Fin) = (𝒫 𝑆 ∩ Fin)) | 
| 9 | sseq2 4010 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ((𝐹‘𝑦) ⊆ 𝑠 ↔ (𝐹‘𝑦) ⊆ 𝑆)) | |
| 10 | 8, 9 | raleqbidv 3346 | . . . . 5 ⊢ (𝑠 = 𝑆 → (∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠 ↔ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆)) | 
| 11 | 6, 10 | bibi12d 345 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠) ↔ (𝑆 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆))) | 
| 12 | isacs2.f | . . . . . . 7 ⊢ 𝐹 = (mrCls‘𝐶) | |
| 13 | 12 | isacs2 17696 | . . . . . 6 ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠))) | 
| 14 | 13 | simprbi 496 | . . . . 5 ⊢ (𝐶 ∈ (ACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠)) | 
| 15 | 14 | adantr 480 | . . . 4 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠)) | 
| 16 | elfvdm 6943 | . . . . . 6 ⊢ (𝐶 ∈ (ACS‘𝑋) → 𝑋 ∈ dom ACS) | |
| 17 | elpw2g 5333 | . . . . . 6 ⊢ (𝑋 ∈ dom ACS → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
| 18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | 
| 19 | 18 | biimpar 477 | . . . 4 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ 𝒫 𝑋) | 
| 20 | 11, 15, 19 | rspcdva 3623 | . . 3 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆)) | 
| 21 | 20 | pm5.32da 579 | . 2 ⊢ (𝐶 ∈ (ACS‘𝑋) → ((𝑆 ⊆ 𝑋 ∧ 𝑆 ∈ 𝐶) ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆))) | 
| 22 | 5, 21 | bitrd 279 | 1 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝐶 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∩ cin 3950 ⊆ wss 3951 𝒫 cpw 4600 dom cdm 5685 ‘cfv 6561 Fincfn 8985 Moorecmre 17625 mrClscmrc 17626 ACScacs 17628 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-mre 17629 df-mrc 17630 df-acs 17632 | 
| This theorem is referenced by: acsfiel2 17698 isacs3lem 18587 | 
| Copyright terms: Public domain | W3C validator |