| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsfiel | Structured version Visualization version GIF version | ||
| Description: A set is closed in an algebraic closure system iff it contains all closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| Ref | Expression |
|---|---|
| isacs2.f | ⊢ 𝐹 = (mrCls‘𝐶) |
| Ref | Expression |
|---|---|
| acsfiel | ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝐶 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsmre 17589 | . . . . 5 ⊢ (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋)) | |
| 2 | mress 17530 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → 𝑆 ⊆ 𝑋) | |
| 3 | 1, 2 | sylan 580 | . . . 4 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ∈ 𝐶) → 𝑆 ⊆ 𝑋) |
| 4 | 3 | ex 412 | . . 3 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑋)) |
| 5 | 4 | pm4.71rd 562 | . 2 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝐶 ↔ (𝑆 ⊆ 𝑋 ∧ 𝑆 ∈ 𝐶))) |
| 6 | eleq1 2816 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑠 ∈ 𝐶 ↔ 𝑆 ∈ 𝐶)) | |
| 7 | pweq 4573 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆) | |
| 8 | 7 | ineq1d 4178 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝒫 𝑠 ∩ Fin) = (𝒫 𝑆 ∩ Fin)) |
| 9 | sseq2 3970 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ((𝐹‘𝑦) ⊆ 𝑠 ↔ (𝐹‘𝑦) ⊆ 𝑆)) | |
| 10 | 8, 9 | raleqbidv 3316 | . . . . 5 ⊢ (𝑠 = 𝑆 → (∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠 ↔ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆)) |
| 11 | 6, 10 | bibi12d 345 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠) ↔ (𝑆 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆))) |
| 12 | isacs2.f | . . . . . . 7 ⊢ 𝐹 = (mrCls‘𝐶) | |
| 13 | 12 | isacs2 17590 | . . . . . 6 ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠))) |
| 14 | 13 | simprbi 496 | . . . . 5 ⊢ (𝐶 ∈ (ACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠)) |
| 15 | 14 | adantr 480 | . . . 4 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠)) |
| 16 | elfvdm 6877 | . . . . . 6 ⊢ (𝐶 ∈ (ACS‘𝑋) → 𝑋 ∈ dom ACS) | |
| 17 | elpw2g 5283 | . . . . . 6 ⊢ (𝑋 ∈ dom ACS → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
| 18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
| 19 | 18 | biimpar 477 | . . . 4 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ 𝒫 𝑋) |
| 20 | 11, 15, 19 | rspcdva 3586 | . . 3 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆)) |
| 21 | 20 | pm5.32da 579 | . 2 ⊢ (𝐶 ∈ (ACS‘𝑋) → ((𝑆 ⊆ 𝑋 ∧ 𝑆 ∈ 𝐶) ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆))) |
| 22 | 5, 21 | bitrd 279 | 1 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝐶 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3910 ⊆ wss 3911 𝒫 cpw 4559 dom cdm 5631 ‘cfv 6499 Fincfn 8895 Moorecmre 17519 mrClscmrc 17520 ACScacs 17522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-mre 17523 df-mrc 17524 df-acs 17526 |
| This theorem is referenced by: acsfiel2 17592 isacs3lem 18477 |
| Copyright terms: Public domain | W3C validator |