![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acsfiel | Structured version Visualization version GIF version |
Description: A set is closed in an algebraic closure system iff it contains all closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
isacs2.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
acsfiel | ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝐶 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acsmre 17697 | . . . . 5 ⊢ (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋)) | |
2 | mress 17638 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → 𝑆 ⊆ 𝑋) | |
3 | 1, 2 | sylan 580 | . . . 4 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ∈ 𝐶) → 𝑆 ⊆ 𝑋) |
4 | 3 | ex 412 | . . 3 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑋)) |
5 | 4 | pm4.71rd 562 | . 2 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝐶 ↔ (𝑆 ⊆ 𝑋 ∧ 𝑆 ∈ 𝐶))) |
6 | eleq1 2827 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑠 ∈ 𝐶 ↔ 𝑆 ∈ 𝐶)) | |
7 | pweq 4619 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆) | |
8 | 7 | ineq1d 4227 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝒫 𝑠 ∩ Fin) = (𝒫 𝑆 ∩ Fin)) |
9 | sseq2 4022 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ((𝐹‘𝑦) ⊆ 𝑠 ↔ (𝐹‘𝑦) ⊆ 𝑆)) | |
10 | 8, 9 | raleqbidv 3344 | . . . . 5 ⊢ (𝑠 = 𝑆 → (∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠 ↔ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆)) |
11 | 6, 10 | bibi12d 345 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠) ↔ (𝑆 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆))) |
12 | isacs2.f | . . . . . . 7 ⊢ 𝐹 = (mrCls‘𝐶) | |
13 | 12 | isacs2 17698 | . . . . . 6 ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠))) |
14 | 13 | simprbi 496 | . . . . 5 ⊢ (𝐶 ∈ (ACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠)) |
15 | 14 | adantr 480 | . . . 4 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠)) |
16 | elfvdm 6944 | . . . . . 6 ⊢ (𝐶 ∈ (ACS‘𝑋) → 𝑋 ∈ dom ACS) | |
17 | elpw2g 5339 | . . . . . 6 ⊢ (𝑋 ∈ dom ACS → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
19 | 18 | biimpar 477 | . . . 4 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ 𝒫 𝑋) |
20 | 11, 15, 19 | rspcdva 3623 | . . 3 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆)) |
21 | 20 | pm5.32da 579 | . 2 ⊢ (𝐶 ∈ (ACS‘𝑋) → ((𝑆 ⊆ 𝑋 ∧ 𝑆 ∈ 𝐶) ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆))) |
22 | 5, 21 | bitrd 279 | 1 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝐶 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∩ cin 3962 ⊆ wss 3963 𝒫 cpw 4605 dom cdm 5689 ‘cfv 6563 Fincfn 8984 Moorecmre 17627 mrClscmrc 17628 ACScacs 17630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-mre 17631 df-mrc 17632 df-acs 17634 |
This theorem is referenced by: acsfiel2 17700 isacs3lem 18600 |
Copyright terms: Public domain | W3C validator |