MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfiel Structured version   Visualization version   GIF version

Theorem acsfiel 17597
Description: A set is closed in an algebraic closure system iff it contains all closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
isacs2.f 𝐹 = (mrClsβ€˜πΆ)
Assertion
Ref Expression
acsfiel (𝐢 ∈ (ACSβ€˜π‘‹) β†’ (𝑆 ∈ 𝐢 ↔ (𝑆 βŠ† 𝑋 ∧ βˆ€π‘¦ ∈ (𝒫 𝑆 ∩ Fin)(πΉβ€˜π‘¦) βŠ† 𝑆)))
Distinct variable groups:   𝑦,𝐢   𝑦,𝐹   𝑦,𝑆   𝑦,𝑋

Proof of Theorem acsfiel
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 acsmre 17595 . . . . 5 (𝐢 ∈ (ACSβ€˜π‘‹) β†’ 𝐢 ∈ (Mooreβ€˜π‘‹))
2 mress 17536 . . . . 5 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝑆 ∈ 𝐢) β†’ 𝑆 βŠ† 𝑋)
31, 2sylan 580 . . . 4 ((𝐢 ∈ (ACSβ€˜π‘‹) ∧ 𝑆 ∈ 𝐢) β†’ 𝑆 βŠ† 𝑋)
43ex 413 . . 3 (𝐢 ∈ (ACSβ€˜π‘‹) β†’ (𝑆 ∈ 𝐢 β†’ 𝑆 βŠ† 𝑋))
54pm4.71rd 563 . 2 (𝐢 ∈ (ACSβ€˜π‘‹) β†’ (𝑆 ∈ 𝐢 ↔ (𝑆 βŠ† 𝑋 ∧ 𝑆 ∈ 𝐢)))
6 eleq1 2821 . . . . 5 (𝑠 = 𝑆 β†’ (𝑠 ∈ 𝐢 ↔ 𝑆 ∈ 𝐢))
7 pweq 4616 . . . . . . 7 (𝑠 = 𝑆 β†’ 𝒫 𝑠 = 𝒫 𝑆)
87ineq1d 4211 . . . . . 6 (𝑠 = 𝑆 β†’ (𝒫 𝑠 ∩ Fin) = (𝒫 𝑆 ∩ Fin))
9 sseq2 4008 . . . . . 6 (𝑠 = 𝑆 β†’ ((πΉβ€˜π‘¦) βŠ† 𝑠 ↔ (πΉβ€˜π‘¦) βŠ† 𝑆))
108, 9raleqbidv 3342 . . . . 5 (𝑠 = 𝑆 β†’ (βˆ€π‘¦ ∈ (𝒫 𝑠 ∩ Fin)(πΉβ€˜π‘¦) βŠ† 𝑠 ↔ βˆ€π‘¦ ∈ (𝒫 𝑆 ∩ Fin)(πΉβ€˜π‘¦) βŠ† 𝑆))
116, 10bibi12d 345 . . . 4 (𝑠 = 𝑆 β†’ ((𝑠 ∈ 𝐢 ↔ βˆ€π‘¦ ∈ (𝒫 𝑠 ∩ Fin)(πΉβ€˜π‘¦) βŠ† 𝑠) ↔ (𝑆 ∈ 𝐢 ↔ βˆ€π‘¦ ∈ (𝒫 𝑆 ∩ Fin)(πΉβ€˜π‘¦) βŠ† 𝑆)))
12 isacs2.f . . . . . . 7 𝐹 = (mrClsβ€˜πΆ)
1312isacs2 17596 . . . . . 6 (𝐢 ∈ (ACSβ€˜π‘‹) ↔ (𝐢 ∈ (Mooreβ€˜π‘‹) ∧ βˆ€π‘  ∈ 𝒫 𝑋(𝑠 ∈ 𝐢 ↔ βˆ€π‘¦ ∈ (𝒫 𝑠 ∩ Fin)(πΉβ€˜π‘¦) βŠ† 𝑠)))
1413simprbi 497 . . . . 5 (𝐢 ∈ (ACSβ€˜π‘‹) β†’ βˆ€π‘  ∈ 𝒫 𝑋(𝑠 ∈ 𝐢 ↔ βˆ€π‘¦ ∈ (𝒫 𝑠 ∩ Fin)(πΉβ€˜π‘¦) βŠ† 𝑠))
1514adantr 481 . . . 4 ((𝐢 ∈ (ACSβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) β†’ βˆ€π‘  ∈ 𝒫 𝑋(𝑠 ∈ 𝐢 ↔ βˆ€π‘¦ ∈ (𝒫 𝑠 ∩ Fin)(πΉβ€˜π‘¦) βŠ† 𝑠))
16 elfvdm 6928 . . . . . 6 (𝐢 ∈ (ACSβ€˜π‘‹) β†’ 𝑋 ∈ dom ACS)
17 elpw2g 5344 . . . . . 6 (𝑋 ∈ dom ACS β†’ (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 βŠ† 𝑋))
1816, 17syl 17 . . . . 5 (𝐢 ∈ (ACSβ€˜π‘‹) β†’ (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 βŠ† 𝑋))
1918biimpar 478 . . . 4 ((𝐢 ∈ (ACSβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) β†’ 𝑆 ∈ 𝒫 𝑋)
2011, 15, 19rspcdva 3613 . . 3 ((𝐢 ∈ (ACSβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) β†’ (𝑆 ∈ 𝐢 ↔ βˆ€π‘¦ ∈ (𝒫 𝑆 ∩ Fin)(πΉβ€˜π‘¦) βŠ† 𝑆))
2120pm5.32da 579 . 2 (𝐢 ∈ (ACSβ€˜π‘‹) β†’ ((𝑆 βŠ† 𝑋 ∧ 𝑆 ∈ 𝐢) ↔ (𝑆 βŠ† 𝑋 ∧ βˆ€π‘¦ ∈ (𝒫 𝑆 ∩ Fin)(πΉβ€˜π‘¦) βŠ† 𝑆)))
225, 21bitrd 278 1 (𝐢 ∈ (ACSβ€˜π‘‹) β†’ (𝑆 ∈ 𝐢 ↔ (𝑆 βŠ† 𝑋 ∧ βˆ€π‘¦ ∈ (𝒫 𝑆 ∩ Fin)(πΉβ€˜π‘¦) βŠ† 𝑆)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   ∩ cin 3947   βŠ† wss 3948  π’« cpw 4602  dom cdm 5676  β€˜cfv 6543  Fincfn 8938  Moorecmre 17525  mrClscmrc 17526  ACScacs 17528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-mre 17529  df-mrc 17530  df-acs 17532
This theorem is referenced by:  acsfiel2  17598  isacs3lem  18494
  Copyright terms: Public domain W3C validator