MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfiel Structured version   Visualization version   GIF version

Theorem acsfiel 17280
Description: A set is closed in an algebraic closure system iff it contains all closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
isacs2.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
acsfiel (𝐶 ∈ (ACS‘𝑋) → (𝑆𝐶 ↔ (𝑆𝑋 ∧ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹𝑦) ⊆ 𝑆)))
Distinct variable groups:   𝑦,𝐶   𝑦,𝐹   𝑦,𝑆   𝑦,𝑋

Proof of Theorem acsfiel
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 acsmre 17278 . . . . 5 (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋))
2 mress 17219 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆𝑋)
31, 2sylan 579 . . . 4 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆𝐶) → 𝑆𝑋)
43ex 412 . . 3 (𝐶 ∈ (ACS‘𝑋) → (𝑆𝐶𝑆𝑋))
54pm4.71rd 562 . 2 (𝐶 ∈ (ACS‘𝑋) → (𝑆𝐶 ↔ (𝑆𝑋𝑆𝐶)))
6 eleq1 2826 . . . . 5 (𝑠 = 𝑆 → (𝑠𝐶𝑆𝐶))
7 pweq 4546 . . . . . . 7 (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆)
87ineq1d 4142 . . . . . 6 (𝑠 = 𝑆 → (𝒫 𝑠 ∩ Fin) = (𝒫 𝑆 ∩ Fin))
9 sseq2 3943 . . . . . 6 (𝑠 = 𝑆 → ((𝐹𝑦) ⊆ 𝑠 ↔ (𝐹𝑦) ⊆ 𝑆))
108, 9raleqbidv 3327 . . . . 5 (𝑠 = 𝑆 → (∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠 ↔ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹𝑦) ⊆ 𝑆))
116, 10bibi12d 345 . . . 4 (𝑠 = 𝑆 → ((𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠) ↔ (𝑆𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹𝑦) ⊆ 𝑆)))
12 isacs2.f . . . . . . 7 𝐹 = (mrCls‘𝐶)
1312isacs2 17279 . . . . . 6 (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
1413simprbi 496 . . . . 5 (𝐶 ∈ (ACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠))
1514adantr 480 . . . 4 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆𝑋) → ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠))
16 elfvdm 6788 . . . . . 6 (𝐶 ∈ (ACS‘𝑋) → 𝑋 ∈ dom ACS)
17 elpw2g 5263 . . . . . 6 (𝑋 ∈ dom ACS → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1816, 17syl 17 . . . . 5 (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1918biimpar 477 . . . 4 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆𝑋) → 𝑆 ∈ 𝒫 𝑋)
2011, 15, 19rspcdva 3554 . . 3 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆𝑋) → (𝑆𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹𝑦) ⊆ 𝑆))
2120pm5.32da 578 . 2 (𝐶 ∈ (ACS‘𝑋) → ((𝑆𝑋𝑆𝐶) ↔ (𝑆𝑋 ∧ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹𝑦) ⊆ 𝑆)))
225, 21bitrd 278 1 (𝐶 ∈ (ACS‘𝑋) → (𝑆𝐶 ↔ (𝑆𝑋 ∧ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹𝑦) ⊆ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  cin 3882  wss 3883  𝒫 cpw 4530  dom cdm 5580  cfv 6418  Fincfn 8691  Moorecmre 17208  mrClscmrc 17209  ACScacs 17211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-mre 17212  df-mrc 17213  df-acs 17215
This theorem is referenced by:  acsfiel2  17281  isacs3lem  18175
  Copyright terms: Public domain W3C validator