![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acsfiel | Structured version Visualization version GIF version |
Description: A set is closed in an algebraic closure system iff it contains all closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
isacs2.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
acsfiel | ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝐶 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acsmre 17632 | . . . . 5 ⊢ (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋)) | |
2 | mress 17573 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → 𝑆 ⊆ 𝑋) | |
3 | 1, 2 | sylan 579 | . . . 4 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ∈ 𝐶) → 𝑆 ⊆ 𝑋) |
4 | 3 | ex 412 | . . 3 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑋)) |
5 | 4 | pm4.71rd 562 | . 2 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝐶 ↔ (𝑆 ⊆ 𝑋 ∧ 𝑆 ∈ 𝐶))) |
6 | eleq1 2817 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑠 ∈ 𝐶 ↔ 𝑆 ∈ 𝐶)) | |
7 | pweq 4617 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆) | |
8 | 7 | ineq1d 4211 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝒫 𝑠 ∩ Fin) = (𝒫 𝑆 ∩ Fin)) |
9 | sseq2 4006 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ((𝐹‘𝑦) ⊆ 𝑠 ↔ (𝐹‘𝑦) ⊆ 𝑆)) | |
10 | 8, 9 | raleqbidv 3339 | . . . . 5 ⊢ (𝑠 = 𝑆 → (∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠 ↔ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆)) |
11 | 6, 10 | bibi12d 345 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠) ↔ (𝑆 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆))) |
12 | isacs2.f | . . . . . . 7 ⊢ 𝐹 = (mrCls‘𝐶) | |
13 | 12 | isacs2 17633 | . . . . . 6 ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠))) |
14 | 13 | simprbi 496 | . . . . 5 ⊢ (𝐶 ∈ (ACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠)) |
15 | 14 | adantr 480 | . . . 4 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠)) |
16 | elfvdm 6934 | . . . . . 6 ⊢ (𝐶 ∈ (ACS‘𝑋) → 𝑋 ∈ dom ACS) | |
17 | elpw2g 5346 | . . . . . 6 ⊢ (𝑋 ∈ dom ACS → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
19 | 18 | biimpar 477 | . . . 4 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ 𝒫 𝑋) |
20 | 11, 15, 19 | rspcdva 3610 | . . 3 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆)) |
21 | 20 | pm5.32da 578 | . 2 ⊢ (𝐶 ∈ (ACS‘𝑋) → ((𝑆 ⊆ 𝑋 ∧ 𝑆 ∈ 𝐶) ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆))) |
22 | 5, 21 | bitrd 279 | 1 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝐶 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3058 ∩ cin 3946 ⊆ wss 3947 𝒫 cpw 4603 dom cdm 5678 ‘cfv 6548 Fincfn 8964 Moorecmre 17562 mrClscmrc 17563 ACScacs 17565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-mre 17566 df-mrc 17567 df-acs 17569 |
This theorem is referenced by: acsfiel2 17635 isacs3lem 18534 |
Copyright terms: Public domain | W3C validator |