Proof of Theorem submrc
Step | Hyp | Ref
| Expression |
1 | | submre 17314 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶) → (𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷)) |
2 | 1 | 3adant3 1131 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → (𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷)) |
3 | | simp1 1135 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → 𝐶 ∈ (Moore‘𝑋)) |
4 | | submrc.f |
. . . 4
⊢ 𝐹 = (mrCls‘𝐶) |
5 | | simp3 1137 |
. . . . 5
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → 𝑈 ⊆ 𝐷) |
6 | | mress 17302 |
. . . . . 6
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶) → 𝐷 ⊆ 𝑋) |
7 | 6 | 3adant3 1131 |
. . . . 5
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → 𝐷 ⊆ 𝑋) |
8 | 5, 7 | sstrd 3931 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → 𝑈 ⊆ 𝑋) |
9 | 3, 4, 8 | mrcssidd 17334 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → 𝑈 ⊆ (𝐹‘𝑈)) |
10 | 4 | mrccl 17320 |
. . . . 5
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) ∈ 𝐶) |
11 | 3, 8, 10 | syl2anc 584 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → (𝐹‘𝑈) ∈ 𝐶) |
12 | 4 | mrcsscl 17329 |
. . . . . 6
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐷 ∧ 𝐷 ∈ 𝐶) → (𝐹‘𝑈) ⊆ 𝐷) |
13 | 12 | 3com23 1125 |
. . . . 5
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → (𝐹‘𝑈) ⊆ 𝐷) |
14 | | fvex 6787 |
. . . . . 6
⊢ (𝐹‘𝑈) ∈ V |
15 | 14 | elpw 4537 |
. . . . 5
⊢ ((𝐹‘𝑈) ∈ 𝒫 𝐷 ↔ (𝐹‘𝑈) ⊆ 𝐷) |
16 | 13, 15 | sylibr 233 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → (𝐹‘𝑈) ∈ 𝒫 𝐷) |
17 | 11, 16 | elind 4128 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → (𝐹‘𝑈) ∈ (𝐶 ∩ 𝒫 𝐷)) |
18 | | submrc.g |
. . . 4
⊢ 𝐺 = (mrCls‘(𝐶 ∩ 𝒫 𝐷)) |
19 | 18 | mrcsscl 17329 |
. . 3
⊢ (((𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷) ∧ 𝑈 ⊆ (𝐹‘𝑈) ∧ (𝐹‘𝑈) ∈ (𝐶 ∩ 𝒫 𝐷)) → (𝐺‘𝑈) ⊆ (𝐹‘𝑈)) |
20 | 2, 9, 17, 19 | syl3anc 1370 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → (𝐺‘𝑈) ⊆ (𝐹‘𝑈)) |
21 | 2, 18, 5 | mrcssidd 17334 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → 𝑈 ⊆ (𝐺‘𝑈)) |
22 | 18 | mrccl 17320 |
. . . . 5
⊢ (((𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷) ∧ 𝑈 ⊆ 𝐷) → (𝐺‘𝑈) ∈ (𝐶 ∩ 𝒫 𝐷)) |
23 | 2, 5, 22 | syl2anc 584 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → (𝐺‘𝑈) ∈ (𝐶 ∩ 𝒫 𝐷)) |
24 | 23 | elin1d 4132 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → (𝐺‘𝑈) ∈ 𝐶) |
25 | 4 | mrcsscl 17329 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ (𝐺‘𝑈) ∧ (𝐺‘𝑈) ∈ 𝐶) → (𝐹‘𝑈) ⊆ (𝐺‘𝑈)) |
26 | 3, 21, 24, 25 | syl3anc 1370 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → (𝐹‘𝑈) ⊆ (𝐺‘𝑈)) |
27 | 20, 26 | eqssd 3938 |
1
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → (𝐺‘𝑈) = (𝐹‘𝑈)) |