MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submrc Structured version   Visualization version   GIF version

Theorem submrc 17536
Description: In a closure system which is cut off above some level, closures below that level act as normal. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
submrc.f 𝐹 = (mrCls‘𝐶)
submrc.g 𝐺 = (mrCls‘(𝐶 ∩ 𝒫 𝐷))
Assertion
Ref Expression
submrc ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐺𝑈) = (𝐹𝑈))

Proof of Theorem submrc
StepHypRef Expression
1 submre 17509 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶) → (𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷))
213adant3 1132 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷))
3 simp1 1136 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝐶 ∈ (Moore‘𝑋))
4 submrc.f . . . 4 𝐹 = (mrCls‘𝐶)
5 simp3 1138 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝑈𝐷)
6 mress 17497 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶) → 𝐷𝑋)
763adant3 1132 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝐷𝑋)
85, 7sstrd 3941 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝑈𝑋)
93, 4, 8mrcssidd 17533 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝑈 ⊆ (𝐹𝑈))
104mrccl 17519 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ 𝐶)
113, 8, 10syl2anc 584 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐹𝑈) ∈ 𝐶)
124mrcsscl 17528 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐷𝐷𝐶) → (𝐹𝑈) ⊆ 𝐷)
13123com23 1126 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐹𝑈) ⊆ 𝐷)
14 fvex 6841 . . . . . 6 (𝐹𝑈) ∈ V
1514elpw 4553 . . . . 5 ((𝐹𝑈) ∈ 𝒫 𝐷 ↔ (𝐹𝑈) ⊆ 𝐷)
1613, 15sylibr 234 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐹𝑈) ∈ 𝒫 𝐷)
1711, 16elind 4149 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐹𝑈) ∈ (𝐶 ∩ 𝒫 𝐷))
18 submrc.g . . . 4 𝐺 = (mrCls‘(𝐶 ∩ 𝒫 𝐷))
1918mrcsscl 17528 . . 3 (((𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷) ∧ 𝑈 ⊆ (𝐹𝑈) ∧ (𝐹𝑈) ∈ (𝐶 ∩ 𝒫 𝐷)) → (𝐺𝑈) ⊆ (𝐹𝑈))
202, 9, 17, 19syl3anc 1373 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐺𝑈) ⊆ (𝐹𝑈))
212, 18, 5mrcssidd 17533 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝑈 ⊆ (𝐺𝑈))
2218mrccl 17519 . . . . 5 (((𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷) ∧ 𝑈𝐷) → (𝐺𝑈) ∈ (𝐶 ∩ 𝒫 𝐷))
232, 5, 22syl2anc 584 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐺𝑈) ∈ (𝐶 ∩ 𝒫 𝐷))
2423elin1d 4153 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐺𝑈) ∈ 𝐶)
254mrcsscl 17528 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ (𝐺𝑈) ∧ (𝐺𝑈) ∈ 𝐶) → (𝐹𝑈) ⊆ (𝐺𝑈))
263, 21, 24, 25syl3anc 1373 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐹𝑈) ⊆ (𝐺𝑈))
2720, 26eqssd 3948 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐺𝑈) = (𝐹𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  cin 3897  wss 3898  𝒫 cpw 4549  cfv 6486  Moorecmre 17486  mrClscmrc 17487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-mre 17490  df-mrc 17491
This theorem is referenced by:  evlseu  22019
  Copyright terms: Public domain W3C validator