MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submrc Structured version   Visualization version   GIF version

Theorem submrc 17337
Description: In a closure system which is cut off above some level, closures below that level act as normal. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
submrc.f 𝐹 = (mrCls‘𝐶)
submrc.g 𝐺 = (mrCls‘(𝐶 ∩ 𝒫 𝐷))
Assertion
Ref Expression
submrc ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐺𝑈) = (𝐹𝑈))

Proof of Theorem submrc
StepHypRef Expression
1 submre 17314 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶) → (𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷))
213adant3 1131 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷))
3 simp1 1135 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝐶 ∈ (Moore‘𝑋))
4 submrc.f . . . 4 𝐹 = (mrCls‘𝐶)
5 simp3 1137 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝑈𝐷)
6 mress 17302 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶) → 𝐷𝑋)
763adant3 1131 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝐷𝑋)
85, 7sstrd 3931 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝑈𝑋)
93, 4, 8mrcssidd 17334 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝑈 ⊆ (𝐹𝑈))
104mrccl 17320 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ 𝐶)
113, 8, 10syl2anc 584 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐹𝑈) ∈ 𝐶)
124mrcsscl 17329 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐷𝐷𝐶) → (𝐹𝑈) ⊆ 𝐷)
13123com23 1125 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐹𝑈) ⊆ 𝐷)
14 fvex 6787 . . . . . 6 (𝐹𝑈) ∈ V
1514elpw 4537 . . . . 5 ((𝐹𝑈) ∈ 𝒫 𝐷 ↔ (𝐹𝑈) ⊆ 𝐷)
1613, 15sylibr 233 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐹𝑈) ∈ 𝒫 𝐷)
1711, 16elind 4128 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐹𝑈) ∈ (𝐶 ∩ 𝒫 𝐷))
18 submrc.g . . . 4 𝐺 = (mrCls‘(𝐶 ∩ 𝒫 𝐷))
1918mrcsscl 17329 . . 3 (((𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷) ∧ 𝑈 ⊆ (𝐹𝑈) ∧ (𝐹𝑈) ∈ (𝐶 ∩ 𝒫 𝐷)) → (𝐺𝑈) ⊆ (𝐹𝑈))
202, 9, 17, 19syl3anc 1370 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐺𝑈) ⊆ (𝐹𝑈))
212, 18, 5mrcssidd 17334 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝑈 ⊆ (𝐺𝑈))
2218mrccl 17320 . . . . 5 (((𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷) ∧ 𝑈𝐷) → (𝐺𝑈) ∈ (𝐶 ∩ 𝒫 𝐷))
232, 5, 22syl2anc 584 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐺𝑈) ∈ (𝐶 ∩ 𝒫 𝐷))
2423elin1d 4132 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐺𝑈) ∈ 𝐶)
254mrcsscl 17329 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ (𝐺𝑈) ∧ (𝐺𝑈) ∈ 𝐶) → (𝐹𝑈) ⊆ (𝐺𝑈))
263, 21, 24, 25syl3anc 1370 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐹𝑈) ⊆ (𝐺𝑈))
2720, 26eqssd 3938 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐺𝑈) = (𝐹𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  cin 3886  wss 3887  𝒫 cpw 4533  cfv 6433  Moorecmre 17291  mrClscmrc 17292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-mre 17295  df-mrc 17296
This theorem is referenced by:  evlseu  21293
  Copyright terms: Public domain W3C validator