Proof of Theorem submrc
| Step | Hyp | Ref
| Expression |
| 1 | | submre 17624 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶) → (𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷)) |
| 2 | 1 | 3adant3 1132 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → (𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷)) |
| 3 | | simp1 1136 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → 𝐶 ∈ (Moore‘𝑋)) |
| 4 | | submrc.f |
. . . 4
⊢ 𝐹 = (mrCls‘𝐶) |
| 5 | | simp3 1138 |
. . . . 5
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → 𝑈 ⊆ 𝐷) |
| 6 | | mress 17612 |
. . . . . 6
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶) → 𝐷 ⊆ 𝑋) |
| 7 | 6 | 3adant3 1132 |
. . . . 5
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → 𝐷 ⊆ 𝑋) |
| 8 | 5, 7 | sstrd 3976 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → 𝑈 ⊆ 𝑋) |
| 9 | 3, 4, 8 | mrcssidd 17644 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → 𝑈 ⊆ (𝐹‘𝑈)) |
| 10 | 4 | mrccl 17630 |
. . . . 5
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) ∈ 𝐶) |
| 11 | 3, 8, 10 | syl2anc 584 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → (𝐹‘𝑈) ∈ 𝐶) |
| 12 | 4 | mrcsscl 17639 |
. . . . . 6
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐷 ∧ 𝐷 ∈ 𝐶) → (𝐹‘𝑈) ⊆ 𝐷) |
| 13 | 12 | 3com23 1126 |
. . . . 5
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → (𝐹‘𝑈) ⊆ 𝐷) |
| 14 | | fvex 6900 |
. . . . . 6
⊢ (𝐹‘𝑈) ∈ V |
| 15 | 14 | elpw 4586 |
. . . . 5
⊢ ((𝐹‘𝑈) ∈ 𝒫 𝐷 ↔ (𝐹‘𝑈) ⊆ 𝐷) |
| 16 | 13, 15 | sylibr 234 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → (𝐹‘𝑈) ∈ 𝒫 𝐷) |
| 17 | 11, 16 | elind 4182 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → (𝐹‘𝑈) ∈ (𝐶 ∩ 𝒫 𝐷)) |
| 18 | | submrc.g |
. . . 4
⊢ 𝐺 = (mrCls‘(𝐶 ∩ 𝒫 𝐷)) |
| 19 | 18 | mrcsscl 17639 |
. . 3
⊢ (((𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷) ∧ 𝑈 ⊆ (𝐹‘𝑈) ∧ (𝐹‘𝑈) ∈ (𝐶 ∩ 𝒫 𝐷)) → (𝐺‘𝑈) ⊆ (𝐹‘𝑈)) |
| 20 | 2, 9, 17, 19 | syl3anc 1372 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → (𝐺‘𝑈) ⊆ (𝐹‘𝑈)) |
| 21 | 2, 18, 5 | mrcssidd 17644 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → 𝑈 ⊆ (𝐺‘𝑈)) |
| 22 | 18 | mrccl 17630 |
. . . . 5
⊢ (((𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷) ∧ 𝑈 ⊆ 𝐷) → (𝐺‘𝑈) ∈ (𝐶 ∩ 𝒫 𝐷)) |
| 23 | 2, 5, 22 | syl2anc 584 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → (𝐺‘𝑈) ∈ (𝐶 ∩ 𝒫 𝐷)) |
| 24 | 23 | elin1d 4186 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → (𝐺‘𝑈) ∈ 𝐶) |
| 25 | 4 | mrcsscl 17639 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ (𝐺‘𝑈) ∧ (𝐺‘𝑈) ∈ 𝐶) → (𝐹‘𝑈) ⊆ (𝐺‘𝑈)) |
| 26 | 3, 21, 24, 25 | syl3anc 1372 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → (𝐹‘𝑈) ⊆ (𝐺‘𝑈)) |
| 27 | 20, 26 | eqssd 3983 |
1
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → (𝐺‘𝑈) = (𝐹‘𝑈)) |