![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrcsscl | Structured version Visualization version GIF version |
Description: The closure is the minimal closed set; any closed set which contains the generators is a superset of the closure. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
mrcsscl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶) → (𝐹‘𝑈) ⊆ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mress 17573 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑉 ∈ 𝐶) → 𝑉 ⊆ 𝑋) | |
2 | 1 | 3adant2 1129 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶) → 𝑉 ⊆ 𝑋) |
3 | mrcfval.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
4 | 3 | mrcss 17596 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑈) ⊆ (𝐹‘𝑉)) |
5 | 2, 4 | syld3an3 1407 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶) → (𝐹‘𝑈) ⊆ (𝐹‘𝑉)) |
6 | 3 | mrcid 17593 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑉 ∈ 𝐶) → (𝐹‘𝑉) = 𝑉) |
7 | 6 | 3adant2 1129 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶) → (𝐹‘𝑉) = 𝑉) |
8 | 5, 7 | sseqtrd 4020 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶) → (𝐹‘𝑈) ⊆ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 ‘cfv 6548 Moorecmre 17562 mrClscmrc 17563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-mre 17566 df-mrc 17567 |
This theorem is referenced by: submrc 17608 isacs2 17633 isacs3lem 18534 mrelatlub 18554 mndind 18780 gsumwspan 18798 symggen 19425 cntzspan 19799 dprdspan 19984 subgdmdprd 19991 subgdprd 19992 dprdsn 19993 dprd2dlem1 19998 dprd2da 19999 dmdprdsplit2lem 20002 ablfac1b 20027 pgpfac1lem1 20031 pgpfac1lem5 20036 mrccss 21626 evlseu 22029 ismrcd2 42119 mrefg3 42128 isnacs3 42130 |
Copyright terms: Public domain | W3C validator |