![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrcsscl | Structured version Visualization version GIF version |
Description: The closure is the minimal closed set; any closed set which contains the generators is a superset of the closure. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
mrcsscl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶) → (𝐹‘𝑈) ⊆ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mress 17651 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑉 ∈ 𝐶) → 𝑉 ⊆ 𝑋) | |
2 | 1 | 3adant2 1131 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶) → 𝑉 ⊆ 𝑋) |
3 | mrcfval.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
4 | 3 | mrcss 17674 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑈) ⊆ (𝐹‘𝑉)) |
5 | 2, 4 | syld3an3 1409 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶) → (𝐹‘𝑈) ⊆ (𝐹‘𝑉)) |
6 | 3 | mrcid 17671 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑉 ∈ 𝐶) → (𝐹‘𝑉) = 𝑉) |
7 | 6 | 3adant2 1131 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶) → (𝐹‘𝑉) = 𝑉) |
8 | 5, 7 | sseqtrd 4049 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶) → (𝐹‘𝑈) ⊆ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6573 Moorecmre 17640 mrClscmrc 17641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-mre 17644 df-mrc 17645 |
This theorem is referenced by: submrc 17686 isacs2 17711 isacs3lem 18612 mrelatlub 18632 mndind 18863 gsumwspan 18881 symggen 19512 cntzspan 19886 dprdspan 20071 subgdmdprd 20078 subgdprd 20079 dprdsn 20080 dprd2dlem1 20085 dprd2da 20086 dmdprdsplit2lem 20089 ablfac1b 20114 pgpfac1lem1 20118 pgpfac1lem5 20123 mrccss 21735 evlseu 22130 ismrcd2 42655 mrefg3 42664 isnacs3 42666 |
Copyright terms: Public domain | W3C validator |