| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrcsscl | Structured version Visualization version GIF version | ||
| Description: The closure is the minimal closed set; any closed set which contains the generators is a superset of the closure. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
| Ref | Expression |
|---|---|
| mrcsscl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶) → (𝐹‘𝑈) ⊆ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mress 17513 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑉 ∈ 𝐶) → 𝑉 ⊆ 𝑋) | |
| 2 | 1 | 3adant2 1131 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶) → 𝑉 ⊆ 𝑋) |
| 3 | mrcfval.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
| 4 | 3 | mrcss 17540 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑈) ⊆ (𝐹‘𝑉)) |
| 5 | 2, 4 | syld3an3 1411 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶) → (𝐹‘𝑈) ⊆ (𝐹‘𝑉)) |
| 6 | 3 | mrcid 17537 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑉 ∈ 𝐶) → (𝐹‘𝑉) = 𝑉) |
| 7 | 6 | 3adant2 1131 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶) → (𝐹‘𝑉) = 𝑉) |
| 8 | 5, 7 | sseqtrd 3974 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶) → (𝐹‘𝑈) ⊆ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ‘cfv 6486 Moorecmre 17502 mrClscmrc 17503 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-mre 17506 df-mrc 17507 |
| This theorem is referenced by: submrc 17552 isacs2 17577 isacs3lem 18466 mrelatlub 18486 mndind 18720 gsumwspan 18738 symggen 19367 cntzspan 19741 dprdspan 19926 subgdmdprd 19933 subgdprd 19934 dprdsn 19935 dprd2dlem1 19940 dprd2da 19941 dmdprdsplit2lem 19944 ablfac1b 19969 pgpfac1lem1 19973 pgpfac1lem5 19978 mrccss 21619 evlseu 22006 ismrcd2 42675 mrefg3 42684 isnacs3 42686 |
| Copyright terms: Public domain | W3C validator |