| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrcsscl | Structured version Visualization version GIF version | ||
| Description: The closure is the minimal closed set; any closed set which contains the generators is a superset of the closure. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
| Ref | Expression |
|---|---|
| mrcsscl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶) → (𝐹‘𝑈) ⊆ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mress 17490 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑉 ∈ 𝐶) → 𝑉 ⊆ 𝑋) | |
| 2 | 1 | 3adant2 1131 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶) → 𝑉 ⊆ 𝑋) |
| 3 | mrcfval.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
| 4 | 3 | mrcss 17517 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑈) ⊆ (𝐹‘𝑉)) |
| 5 | 2, 4 | syld3an3 1411 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶) → (𝐹‘𝑈) ⊆ (𝐹‘𝑉)) |
| 6 | 3 | mrcid 17514 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑉 ∈ 𝐶) → (𝐹‘𝑉) = 𝑉) |
| 7 | 6 | 3adant2 1131 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶) → (𝐹‘𝑉) = 𝑉) |
| 8 | 5, 7 | sseqtrd 3966 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶) → (𝐹‘𝑈) ⊆ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6476 Moorecmre 17479 mrClscmrc 17480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-mre 17483 df-mrc 17484 |
| This theorem is referenced by: submrc 17529 isacs2 17554 isacs3lem 18443 mrelatlub 18463 mndind 18731 gsumwspan 18749 symggen 19377 cntzspan 19751 dprdspan 19936 subgdmdprd 19943 subgdprd 19944 dprdsn 19945 dprd2dlem1 19950 dprd2da 19951 dmdprdsplit2lem 19954 ablfac1b 19979 pgpfac1lem1 19983 pgpfac1lem5 19988 mrccss 21626 evlseu 22013 ismrcd2 42732 mrefg3 42741 isnacs3 42743 |
| Copyright terms: Public domain | W3C validator |