MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcsscl Structured version   Visualization version   GIF version

Theorem mrcsscl 17632
Description: The closure is the minimal closed set; any closed set which contains the generators is a superset of the closure. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcsscl ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑉𝑉𝐶) → (𝐹𝑈) ⊆ 𝑉)

Proof of Theorem mrcsscl
StepHypRef Expression
1 mress 17605 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑉𝐶) → 𝑉𝑋)
213adant2 1131 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑉𝑉𝐶) → 𝑉𝑋)
3 mrcfval.f . . . 4 𝐹 = (mrCls‘𝐶)
43mrcss 17628 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑉𝑉𝑋) → (𝐹𝑈) ⊆ (𝐹𝑉))
52, 4syld3an3 1411 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑉𝑉𝐶) → (𝐹𝑈) ⊆ (𝐹𝑉))
63mrcid 17625 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑉𝐶) → (𝐹𝑉) = 𝑉)
763adant2 1131 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑉𝑉𝐶) → (𝐹𝑉) = 𝑉)
85, 7sseqtrd 3995 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑉𝑉𝐶) → (𝐹𝑈) ⊆ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  wss 3926  cfv 6531  Moorecmre 17594  mrClscmrc 17595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-mre 17598  df-mrc 17599
This theorem is referenced by:  submrc  17640  isacs2  17665  isacs3lem  18552  mrelatlub  18572  mndind  18806  gsumwspan  18824  symggen  19451  cntzspan  19825  dprdspan  20010  subgdmdprd  20017  subgdprd  20018  dprdsn  20019  dprd2dlem1  20024  dprd2da  20025  dmdprdsplit2lem  20028  ablfac1b  20053  pgpfac1lem1  20057  pgpfac1lem5  20062  mrccss  21654  evlseu  22041  ismrcd2  42722  mrefg3  42731  isnacs3  42733
  Copyright terms: Public domain W3C validator