Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulpipq2 | Structured version Visualization version GIF version |
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulpipq2 | ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = 〈((1st ‘𝐴) ·N (1st ‘𝐵)), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . 4 ⊢ (𝑥 = 𝐴 → (1st ‘𝑥) = (1st ‘𝐴)) | |
2 | 1 | oveq1d 7270 | . . 3 ⊢ (𝑥 = 𝐴 → ((1st ‘𝑥) ·N (1st ‘𝑦)) = ((1st ‘𝐴) ·N (1st ‘𝑦))) |
3 | fveq2 6756 | . . . 4 ⊢ (𝑥 = 𝐴 → (2nd ‘𝑥) = (2nd ‘𝐴)) | |
4 | 3 | oveq1d 7270 | . . 3 ⊢ (𝑥 = 𝐴 → ((2nd ‘𝑥) ·N (2nd ‘𝑦)) = ((2nd ‘𝐴) ·N (2nd ‘𝑦))) |
5 | 2, 4 | opeq12d 4809 | . 2 ⊢ (𝑥 = 𝐴 → 〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 = 〈((1st ‘𝐴) ·N (1st ‘𝑦)), ((2nd ‘𝐴) ·N (2nd ‘𝑦))〉) |
6 | fveq2 6756 | . . . 4 ⊢ (𝑦 = 𝐵 → (1st ‘𝑦) = (1st ‘𝐵)) | |
7 | 6 | oveq2d 7271 | . . 3 ⊢ (𝑦 = 𝐵 → ((1st ‘𝐴) ·N (1st ‘𝑦)) = ((1st ‘𝐴) ·N (1st ‘𝐵))) |
8 | fveq2 6756 | . . . 4 ⊢ (𝑦 = 𝐵 → (2nd ‘𝑦) = (2nd ‘𝐵)) | |
9 | 8 | oveq2d 7271 | . . 3 ⊢ (𝑦 = 𝐵 → ((2nd ‘𝐴) ·N (2nd ‘𝑦)) = ((2nd ‘𝐴) ·N (2nd ‘𝐵))) |
10 | 7, 9 | opeq12d 4809 | . 2 ⊢ (𝑦 = 𝐵 → 〈((1st ‘𝐴) ·N (1st ‘𝑦)), ((2nd ‘𝐴) ·N (2nd ‘𝑦))〉 = 〈((1st ‘𝐴) ·N (1st ‘𝐵)), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉) |
11 | df-mpq 10596 | . 2 ⊢ ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ 〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉) | |
12 | opex 5373 | . 2 ⊢ 〈((1st ‘𝐴) ·N (1st ‘𝐵)), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉 ∈ V | |
13 | 5, 10, 11, 12 | ovmpo 7411 | 1 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = 〈((1st ‘𝐴) ·N (1st ‘𝐵)), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 〈cop 4564 × cxp 5578 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 2nd c2nd 7803 Ncnpi 10531 ·N cmi 10533 ·pQ cmpq 10536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-mpq 10596 |
This theorem is referenced by: mulpipq 10627 mulcompq 10639 mulerpqlem 10642 mulassnq 10646 distrnq 10648 ltmnq 10659 |
Copyright terms: Public domain | W3C validator |