| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulpipq2 | Structured version Visualization version GIF version | ||
| Description: Multiplication of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulpipq2 | ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = 〈((1st ‘𝐴) ·N (1st ‘𝐵)), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . . 4 ⊢ (𝑥 = 𝐴 → (1st ‘𝑥) = (1st ‘𝐴)) | |
| 2 | 1 | oveq1d 7405 | . . 3 ⊢ (𝑥 = 𝐴 → ((1st ‘𝑥) ·N (1st ‘𝑦)) = ((1st ‘𝐴) ·N (1st ‘𝑦))) |
| 3 | fveq2 6861 | . . . 4 ⊢ (𝑥 = 𝐴 → (2nd ‘𝑥) = (2nd ‘𝐴)) | |
| 4 | 3 | oveq1d 7405 | . . 3 ⊢ (𝑥 = 𝐴 → ((2nd ‘𝑥) ·N (2nd ‘𝑦)) = ((2nd ‘𝐴) ·N (2nd ‘𝑦))) |
| 5 | 2, 4 | opeq12d 4848 | . 2 ⊢ (𝑥 = 𝐴 → 〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 = 〈((1st ‘𝐴) ·N (1st ‘𝑦)), ((2nd ‘𝐴) ·N (2nd ‘𝑦))〉) |
| 6 | fveq2 6861 | . . . 4 ⊢ (𝑦 = 𝐵 → (1st ‘𝑦) = (1st ‘𝐵)) | |
| 7 | 6 | oveq2d 7406 | . . 3 ⊢ (𝑦 = 𝐵 → ((1st ‘𝐴) ·N (1st ‘𝑦)) = ((1st ‘𝐴) ·N (1st ‘𝐵))) |
| 8 | fveq2 6861 | . . . 4 ⊢ (𝑦 = 𝐵 → (2nd ‘𝑦) = (2nd ‘𝐵)) | |
| 9 | 8 | oveq2d 7406 | . . 3 ⊢ (𝑦 = 𝐵 → ((2nd ‘𝐴) ·N (2nd ‘𝑦)) = ((2nd ‘𝐴) ·N (2nd ‘𝐵))) |
| 10 | 7, 9 | opeq12d 4848 | . 2 ⊢ (𝑦 = 𝐵 → 〈((1st ‘𝐴) ·N (1st ‘𝑦)), ((2nd ‘𝐴) ·N (2nd ‘𝑦))〉 = 〈((1st ‘𝐴) ·N (1st ‘𝐵)), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉) |
| 11 | df-mpq 10869 | . 2 ⊢ ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ 〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉) | |
| 12 | opex 5427 | . 2 ⊢ 〈((1st ‘𝐴) ·N (1st ‘𝐵)), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉 ∈ V | |
| 13 | 5, 10, 11, 12 | ovmpo 7552 | 1 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = 〈((1st ‘𝐴) ·N (1st ‘𝐵)), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4598 × cxp 5639 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 Ncnpi 10804 ·N cmi 10806 ·pQ cmpq 10809 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-mpq 10869 |
| This theorem is referenced by: mulpipq 10900 mulcompq 10912 mulerpqlem 10915 mulassnq 10919 distrnq 10921 ltmnq 10932 |
| Copyright terms: Public domain | W3C validator |