![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulpipq2 | Structured version Visualization version GIF version |
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulpipq2 | ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = 〈((1st ‘𝐴) ·N (1st ‘𝐵)), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6914 | . . . 4 ⊢ (𝑥 = 𝐴 → (1st ‘𝑥) = (1st ‘𝐴)) | |
2 | 1 | oveq1d 7453 | . . 3 ⊢ (𝑥 = 𝐴 → ((1st ‘𝑥) ·N (1st ‘𝑦)) = ((1st ‘𝐴) ·N (1st ‘𝑦))) |
3 | fveq2 6914 | . . . 4 ⊢ (𝑥 = 𝐴 → (2nd ‘𝑥) = (2nd ‘𝐴)) | |
4 | 3 | oveq1d 7453 | . . 3 ⊢ (𝑥 = 𝐴 → ((2nd ‘𝑥) ·N (2nd ‘𝑦)) = ((2nd ‘𝐴) ·N (2nd ‘𝑦))) |
5 | 2, 4 | opeq12d 4889 | . 2 ⊢ (𝑥 = 𝐴 → 〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 = 〈((1st ‘𝐴) ·N (1st ‘𝑦)), ((2nd ‘𝐴) ·N (2nd ‘𝑦))〉) |
6 | fveq2 6914 | . . . 4 ⊢ (𝑦 = 𝐵 → (1st ‘𝑦) = (1st ‘𝐵)) | |
7 | 6 | oveq2d 7454 | . . 3 ⊢ (𝑦 = 𝐵 → ((1st ‘𝐴) ·N (1st ‘𝑦)) = ((1st ‘𝐴) ·N (1st ‘𝐵))) |
8 | fveq2 6914 | . . . 4 ⊢ (𝑦 = 𝐵 → (2nd ‘𝑦) = (2nd ‘𝐵)) | |
9 | 8 | oveq2d 7454 | . . 3 ⊢ (𝑦 = 𝐵 → ((2nd ‘𝐴) ·N (2nd ‘𝑦)) = ((2nd ‘𝐴) ·N (2nd ‘𝐵))) |
10 | 7, 9 | opeq12d 4889 | . 2 ⊢ (𝑦 = 𝐵 → 〈((1st ‘𝐴) ·N (1st ‘𝑦)), ((2nd ‘𝐴) ·N (2nd ‘𝑦))〉 = 〈((1st ‘𝐴) ·N (1st ‘𝐵)), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉) |
11 | df-mpq 10956 | . 2 ⊢ ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ 〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉) | |
12 | opex 5478 | . 2 ⊢ 〈((1st ‘𝐴) ·N (1st ‘𝐵)), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉 ∈ V | |
13 | 5, 10, 11, 12 | ovmpo 7600 | 1 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = 〈((1st ‘𝐴) ·N (1st ‘𝐵)), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 〈cop 4640 × cxp 5691 ‘cfv 6569 (class class class)co 7438 1st c1st 8020 2nd c2nd 8021 Ncnpi 10891 ·N cmi 10893 ·pQ cmpq 10896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-iota 6522 df-fun 6571 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-mpq 10956 |
This theorem is referenced by: mulpipq 10987 mulcompq 10999 mulerpqlem 11002 mulassnq 11006 distrnq 11008 ltmnq 11019 |
Copyright terms: Public domain | W3C validator |