MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulpipq2 Structured version   Visualization version   GIF version

Theorem mulpipq2 10961
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulpipq2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)

Proof of Theorem mulpipq2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6886 . . . 4 (𝑥 = 𝐴 → (1st𝑥) = (1st𝐴))
21oveq1d 7428 . . 3 (𝑥 = 𝐴 → ((1st𝑥) ·N (1st𝑦)) = ((1st𝐴) ·N (1st𝑦)))
3 fveq2 6886 . . . 4 (𝑥 = 𝐴 → (2nd𝑥) = (2nd𝐴))
43oveq1d 7428 . . 3 (𝑥 = 𝐴 → ((2nd𝑥) ·N (2nd𝑦)) = ((2nd𝐴) ·N (2nd𝑦)))
52, 4opeq12d 4861 . 2 (𝑥 = 𝐴 → ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩ = ⟨((1st𝐴) ·N (1st𝑦)), ((2nd𝐴) ·N (2nd𝑦))⟩)
6 fveq2 6886 . . . 4 (𝑦 = 𝐵 → (1st𝑦) = (1st𝐵))
76oveq2d 7429 . . 3 (𝑦 = 𝐵 → ((1st𝐴) ·N (1st𝑦)) = ((1st𝐴) ·N (1st𝐵)))
8 fveq2 6886 . . . 4 (𝑦 = 𝐵 → (2nd𝑦) = (2nd𝐵))
98oveq2d 7429 . . 3 (𝑦 = 𝐵 → ((2nd𝐴) ·N (2nd𝑦)) = ((2nd𝐴) ·N (2nd𝐵)))
107, 9opeq12d 4861 . 2 (𝑦 = 𝐵 → ⟨((1st𝐴) ·N (1st𝑦)), ((2nd𝐴) ·N (2nd𝑦))⟩ = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
11 df-mpq 10931 . 2 ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩)
12 opex 5449 . 2 ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ∈ V
135, 10, 11, 12ovmpo 7575 1 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cop 4612   × cxp 5663  cfv 6541  (class class class)co 7413  1st c1st 7994  2nd c2nd 7995  Ncnpi 10866   ·N cmi 10868   ·pQ cmpq 10871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-mpq 10931
This theorem is referenced by:  mulpipq  10962  mulcompq  10974  mulerpqlem  10977  mulassnq  10981  distrnq  10983  ltmnq  10994
  Copyright terms: Public domain W3C validator