| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulpipq | Structured version Visualization version GIF version | ||
| Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulpipq | ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 ·pQ 〈𝐶, 𝐷〉) = 〈(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5678 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 〈𝐴, 𝐵〉 ∈ (N × N)) | |
| 2 | opelxpi 5678 | . . 3 ⊢ ((𝐶 ∈ N ∧ 𝐷 ∈ N) → 〈𝐶, 𝐷〉 ∈ (N × N)) | |
| 3 | mulpipq2 10899 | . . 3 ⊢ ((〈𝐴, 𝐵〉 ∈ (N × N) ∧ 〈𝐶, 𝐷〉 ∈ (N × N)) → (〈𝐴, 𝐵〉 ·pQ 〈𝐶, 𝐷〉) = 〈((1st ‘〈𝐴, 𝐵〉) ·N (1st ‘〈𝐶, 𝐷〉)), ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉))〉) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 ·pQ 〈𝐶, 𝐷〉) = 〈((1st ‘〈𝐴, 𝐵〉) ·N (1st ‘〈𝐶, 𝐷〉)), ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉))〉) |
| 5 | op1stg 7983 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | |
| 6 | op1stg 7983 | . . . 4 ⊢ ((𝐶 ∈ N ∧ 𝐷 ∈ N) → (1st ‘〈𝐶, 𝐷〉) = 𝐶) | |
| 7 | 5, 6 | oveqan12d 7409 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → ((1st ‘〈𝐴, 𝐵〉) ·N (1st ‘〈𝐶, 𝐷〉)) = (𝐴 ·N 𝐶)) |
| 8 | op2ndg 7984 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | |
| 9 | op2ndg 7984 | . . . 4 ⊢ ((𝐶 ∈ N ∧ 𝐷 ∈ N) → (2nd ‘〈𝐶, 𝐷〉) = 𝐷) | |
| 10 | 8, 9 | oveqan12d 7409 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) = (𝐵 ·N 𝐷)) |
| 11 | 7, 10 | opeq12d 4848 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → 〈((1st ‘〈𝐴, 𝐵〉) ·N (1st ‘〈𝐶, 𝐷〉)), ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉))〉 = 〈(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)〉) |
| 12 | 4, 11 | eqtrd 2765 | 1 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 ·pQ 〈𝐶, 𝐷〉) = 〈(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4598 × cxp 5639 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 Ncnpi 10804 ·N cmi 10806 ·pQ cmpq 10809 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-mpq 10869 |
| This theorem is referenced by: mulassnq 10919 distrnq 10921 mulidnq 10923 recmulnq 10924 |
| Copyright terms: Public domain | W3C validator |