Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulpipq | Structured version Visualization version GIF version |
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulpipq | ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 ·pQ 〈𝐶, 𝐷〉) = 〈(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5626 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 〈𝐴, 𝐵〉 ∈ (N × N)) | |
2 | opelxpi 5626 | . . 3 ⊢ ((𝐶 ∈ N ∧ 𝐷 ∈ N) → 〈𝐶, 𝐷〉 ∈ (N × N)) | |
3 | mulpipq2 10695 | . . 3 ⊢ ((〈𝐴, 𝐵〉 ∈ (N × N) ∧ 〈𝐶, 𝐷〉 ∈ (N × N)) → (〈𝐴, 𝐵〉 ·pQ 〈𝐶, 𝐷〉) = 〈((1st ‘〈𝐴, 𝐵〉) ·N (1st ‘〈𝐶, 𝐷〉)), ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉))〉) | |
4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 ·pQ 〈𝐶, 𝐷〉) = 〈((1st ‘〈𝐴, 𝐵〉) ·N (1st ‘〈𝐶, 𝐷〉)), ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉))〉) |
5 | op1stg 7843 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | |
6 | op1stg 7843 | . . . 4 ⊢ ((𝐶 ∈ N ∧ 𝐷 ∈ N) → (1st ‘〈𝐶, 𝐷〉) = 𝐶) | |
7 | 5, 6 | oveqan12d 7294 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → ((1st ‘〈𝐴, 𝐵〉) ·N (1st ‘〈𝐶, 𝐷〉)) = (𝐴 ·N 𝐶)) |
8 | op2ndg 7844 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | |
9 | op2ndg 7844 | . . . 4 ⊢ ((𝐶 ∈ N ∧ 𝐷 ∈ N) → (2nd ‘〈𝐶, 𝐷〉) = 𝐷) | |
10 | 8, 9 | oveqan12d 7294 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) = (𝐵 ·N 𝐷)) |
11 | 7, 10 | opeq12d 4812 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → 〈((1st ‘〈𝐴, 𝐵〉) ·N (1st ‘〈𝐶, 𝐷〉)), ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉))〉 = 〈(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)〉) |
12 | 4, 11 | eqtrd 2778 | 1 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 ·pQ 〈𝐶, 𝐷〉) = 〈(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 〈cop 4567 × cxp 5587 ‘cfv 6433 (class class class)co 7275 1st c1st 7829 2nd c2nd 7830 Ncnpi 10600 ·N cmi 10602 ·pQ cmpq 10605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-mpq 10665 |
This theorem is referenced by: mulassnq 10715 distrnq 10717 mulidnq 10719 recmulnq 10720 |
Copyright terms: Public domain | W3C validator |