MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulpipq Structured version   Visualization version   GIF version

Theorem mulpipq 10360
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulpipq (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ ·pQ𝐶, 𝐷⟩) = ⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩)

Proof of Theorem mulpipq
StepHypRef Expression
1 opelxpi 5579 . . 3 ((𝐴N𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
2 opelxpi 5579 . . 3 ((𝐶N𝐷N) → ⟨𝐶, 𝐷⟩ ∈ (N × N))
3 mulpipq2 10359 . . 3 ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) → (⟨𝐴, 𝐵⟩ ·pQ𝐶, 𝐷⟩) = ⟨((1st ‘⟨𝐴, 𝐵⟩) ·N (1st ‘⟨𝐶, 𝐷⟩)), ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩))⟩)
41, 2, 3syl2an 598 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ ·pQ𝐶, 𝐷⟩) = ⟨((1st ‘⟨𝐴, 𝐵⟩) ·N (1st ‘⟨𝐶, 𝐷⟩)), ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩))⟩)
5 op1stg 7696 . . . 4 ((𝐴N𝐵N) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
6 op1stg 7696 . . . 4 ((𝐶N𝐷N) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
75, 6oveqan12d 7168 . . 3 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ((1st ‘⟨𝐴, 𝐵⟩) ·N (1st ‘⟨𝐶, 𝐷⟩)) = (𝐴 ·N 𝐶))
8 op2ndg 7697 . . . 4 ((𝐴N𝐵N) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
9 op2ndg 7697 . . . 4 ((𝐶N𝐷N) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
108, 9oveqan12d 7168 . . 3 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) = (𝐵 ·N 𝐷))
117, 10opeq12d 4797 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ⟨((1st ‘⟨𝐴, 𝐵⟩) ·N (1st ‘⟨𝐶, 𝐷⟩)), ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩))⟩ = ⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩)
124, 11eqtrd 2859 1 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ ·pQ𝐶, 𝐷⟩) = ⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  cop 4556   × cxp 5540  cfv 6343  (class class class)co 7149  1st c1st 7682  2nd c2nd 7683  Ncnpi 10264   ·N cmi 10266   ·pQ cmpq 10269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-iota 6302  df-fun 6345  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7684  df-2nd 7685  df-mpq 10329
This theorem is referenced by:  mulassnq  10379  distrnq  10381  mulidnq  10383  recmulnq  10384
  Copyright terms: Public domain W3C validator