Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mrexval | Structured version Visualization version GIF version |
Description: The set of "raw expressions", which are expressions without a typecode, that is, just sequences of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mrexval.c | ⊢ 𝐶 = (mCN‘𝑇) |
mrexval.v | ⊢ 𝑉 = (mVR‘𝑇) |
mrexval.r | ⊢ 𝑅 = (mREx‘𝑇) |
Ref | Expression |
---|---|
mrexval | ⊢ (𝑇 ∈ 𝑊 → 𝑅 = Word (𝐶 ∪ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrexval.r | . 2 ⊢ 𝑅 = (mREx‘𝑇) | |
2 | elex 3451 | . . 3 ⊢ (𝑇 ∈ 𝑊 → 𝑇 ∈ V) | |
3 | fveq2 6783 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mCN‘𝑡) = (mCN‘𝑇)) | |
4 | mrexval.c | . . . . . . 7 ⊢ 𝐶 = (mCN‘𝑇) | |
5 | 3, 4 | eqtr4di 2797 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mCN‘𝑡) = 𝐶) |
6 | fveq2 6783 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇)) | |
7 | mrexval.v | . . . . . . 7 ⊢ 𝑉 = (mVR‘𝑇) | |
8 | 6, 7 | eqtr4di 2797 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉) |
9 | 5, 8 | uneq12d 4099 | . . . . 5 ⊢ (𝑡 = 𝑇 → ((mCN‘𝑡) ∪ (mVR‘𝑡)) = (𝐶 ∪ 𝑉)) |
10 | wrdeq 14248 | . . . . 5 ⊢ (((mCN‘𝑡) ∪ (mVR‘𝑡)) = (𝐶 ∪ 𝑉) → Word ((mCN‘𝑡) ∪ (mVR‘𝑡)) = Word (𝐶 ∪ 𝑉)) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝑡 = 𝑇 → Word ((mCN‘𝑡) ∪ (mVR‘𝑡)) = Word (𝐶 ∪ 𝑉)) |
12 | df-mrex 33457 | . . . 4 ⊢ mREx = (𝑡 ∈ V ↦ Word ((mCN‘𝑡) ∪ (mVR‘𝑡))) | |
13 | fvex 6796 | . . . . . 6 ⊢ (mCN‘𝑡) ∈ V | |
14 | fvex 6796 | . . . . . 6 ⊢ (mVR‘𝑡) ∈ V | |
15 | 13, 14 | unex 7605 | . . . . 5 ⊢ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ∈ V |
16 | 15 | wrdexi 14238 | . . . 4 ⊢ Word ((mCN‘𝑡) ∪ (mVR‘𝑡)) ∈ V |
17 | 11, 12, 16 | fvmpt3i 6889 | . . 3 ⊢ (𝑇 ∈ V → (mREx‘𝑇) = Word (𝐶 ∪ 𝑉)) |
18 | 2, 17 | syl 17 | . 2 ⊢ (𝑇 ∈ 𝑊 → (mREx‘𝑇) = Word (𝐶 ∪ 𝑉)) |
19 | 1, 18 | eqtrid 2791 | 1 ⊢ (𝑇 ∈ 𝑊 → 𝑅 = Word (𝐶 ∪ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3433 ∪ cun 3886 ‘cfv 6437 Word cword 14226 mCNcmcn 33431 mVRcmvar 33432 mRExcmrex 33437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-1st 7840 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-er 8507 df-map 8626 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-card 9706 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-nn 11983 df-n0 12243 df-z 12329 df-uz 12592 df-fz 13249 df-fzo 13392 df-hash 14054 df-word 14227 df-mrex 33457 |
This theorem is referenced by: mexval2 33474 mrsubcv 33481 mrsubff 33483 mrsubrn 33484 mrsub0 33487 mrsubccat 33489 elmrsubrn 33491 mrsubco 33492 mrsubvrs 33493 mvhf 33529 msubvrs 33531 |
Copyright terms: Public domain | W3C validator |