| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mrexval | Structured version Visualization version GIF version | ||
| Description: The set of "raw expressions", which are expressions without a typecode, that is, just sequences of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mrexval.c | ⊢ 𝐶 = (mCN‘𝑇) |
| mrexval.v | ⊢ 𝑉 = (mVR‘𝑇) |
| mrexval.r | ⊢ 𝑅 = (mREx‘𝑇) |
| Ref | Expression |
|---|---|
| mrexval | ⊢ (𝑇 ∈ 𝑊 → 𝑅 = Word (𝐶 ∪ 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrexval.r | . 2 ⊢ 𝑅 = (mREx‘𝑇) | |
| 2 | elex 3476 | . . 3 ⊢ (𝑇 ∈ 𝑊 → 𝑇 ∈ V) | |
| 3 | fveq2 6865 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mCN‘𝑡) = (mCN‘𝑇)) | |
| 4 | mrexval.c | . . . . . . 7 ⊢ 𝐶 = (mCN‘𝑇) | |
| 5 | 3, 4 | eqtr4di 2783 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mCN‘𝑡) = 𝐶) |
| 6 | fveq2 6865 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇)) | |
| 7 | mrexval.v | . . . . . . 7 ⊢ 𝑉 = (mVR‘𝑇) | |
| 8 | 6, 7 | eqtr4di 2783 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉) |
| 9 | 5, 8 | uneq12d 4140 | . . . . 5 ⊢ (𝑡 = 𝑇 → ((mCN‘𝑡) ∪ (mVR‘𝑡)) = (𝐶 ∪ 𝑉)) |
| 10 | wrdeq 14511 | . . . . 5 ⊢ (((mCN‘𝑡) ∪ (mVR‘𝑡)) = (𝐶 ∪ 𝑉) → Word ((mCN‘𝑡) ∪ (mVR‘𝑡)) = Word (𝐶 ∪ 𝑉)) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝑡 = 𝑇 → Word ((mCN‘𝑡) ∪ (mVR‘𝑡)) = Word (𝐶 ∪ 𝑉)) |
| 12 | df-mrex 35475 | . . . 4 ⊢ mREx = (𝑡 ∈ V ↦ Word ((mCN‘𝑡) ∪ (mVR‘𝑡))) | |
| 13 | fvex 6878 | . . . . . 6 ⊢ (mCN‘𝑡) ∈ V | |
| 14 | fvex 6878 | . . . . . 6 ⊢ (mVR‘𝑡) ∈ V | |
| 15 | 13, 14 | unex 7727 | . . . . 5 ⊢ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ∈ V |
| 16 | 15 | wrdexi 14501 | . . . 4 ⊢ Word ((mCN‘𝑡) ∪ (mVR‘𝑡)) ∈ V |
| 17 | 11, 12, 16 | fvmpt3i 6980 | . . 3 ⊢ (𝑇 ∈ V → (mREx‘𝑇) = Word (𝐶 ∪ 𝑉)) |
| 18 | 2, 17 | syl 17 | . 2 ⊢ (𝑇 ∈ 𝑊 → (mREx‘𝑇) = Word (𝐶 ∪ 𝑉)) |
| 19 | 1, 18 | eqtrid 2777 | 1 ⊢ (𝑇 ∈ 𝑊 → 𝑅 = Word (𝐶 ∪ 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ∪ cun 3920 ‘cfv 6519 Word cword 14488 mCNcmcn 35449 mVRcmvar 35450 mRExcmrex 35455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-n0 12459 df-z 12546 df-uz 12810 df-fz 13482 df-fzo 13629 df-hash 14306 df-word 14489 df-mrex 35475 |
| This theorem is referenced by: mexval2 35492 mrsubcv 35499 mrsubff 35501 mrsubrn 35502 mrsub0 35505 mrsubccat 35507 elmrsubrn 35509 mrsubco 35510 mrsubvrs 35511 mvhf 35547 msubvrs 35549 |
| Copyright terms: Public domain | W3C validator |