![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mrexval | Structured version Visualization version GIF version |
Description: The set of "raw expressions", which are expressions without a typecode, that is, just sequences of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mrexval.c | β’ πΆ = (mCNβπ) |
mrexval.v | β’ π = (mVRβπ) |
mrexval.r | β’ π = (mRExβπ) |
Ref | Expression |
---|---|
mrexval | β’ (π β π β π = Word (πΆ βͺ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrexval.r | . 2 β’ π = (mRExβπ) | |
2 | elex 3482 | . . 3 β’ (π β π β π β V) | |
3 | fveq2 6894 | . . . . . . 7 β’ (π‘ = π β (mCNβπ‘) = (mCNβπ)) | |
4 | mrexval.c | . . . . . . 7 β’ πΆ = (mCNβπ) | |
5 | 3, 4 | eqtr4di 2783 | . . . . . 6 β’ (π‘ = π β (mCNβπ‘) = πΆ) |
6 | fveq2 6894 | . . . . . . 7 β’ (π‘ = π β (mVRβπ‘) = (mVRβπ)) | |
7 | mrexval.v | . . . . . . 7 β’ π = (mVRβπ) | |
8 | 6, 7 | eqtr4di 2783 | . . . . . 6 β’ (π‘ = π β (mVRβπ‘) = π) |
9 | 5, 8 | uneq12d 4162 | . . . . 5 β’ (π‘ = π β ((mCNβπ‘) βͺ (mVRβπ‘)) = (πΆ βͺ π)) |
10 | wrdeq 14518 | . . . . 5 β’ (((mCNβπ‘) βͺ (mVRβπ‘)) = (πΆ βͺ π) β Word ((mCNβπ‘) βͺ (mVRβπ‘)) = Word (πΆ βͺ π)) | |
11 | 9, 10 | syl 17 | . . . 4 β’ (π‘ = π β Word ((mCNβπ‘) βͺ (mVRβπ‘)) = Word (πΆ βͺ π)) |
12 | df-mrex 35166 | . . . 4 β’ mREx = (π‘ β V β¦ Word ((mCNβπ‘) βͺ (mVRβπ‘))) | |
13 | fvex 6907 | . . . . . 6 β’ (mCNβπ‘) β V | |
14 | fvex 6907 | . . . . . 6 β’ (mVRβπ‘) β V | |
15 | 13, 14 | unex 7747 | . . . . 5 β’ ((mCNβπ‘) βͺ (mVRβπ‘)) β V |
16 | 15 | wrdexi 14508 | . . . 4 β’ Word ((mCNβπ‘) βͺ (mVRβπ‘)) β V |
17 | 11, 12, 16 | fvmpt3i 7007 | . . 3 β’ (π β V β (mRExβπ) = Word (πΆ βͺ π)) |
18 | 2, 17 | syl 17 | . 2 β’ (π β π β (mRExβπ) = Word (πΆ βͺ π)) |
19 | 1, 18 | eqtrid 2777 | 1 β’ (π β π β π = Word (πΆ βͺ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3463 βͺ cun 3943 βcfv 6547 Word cword 14496 mCNcmcn 35140 mVRcmvar 35141 mRExcmrex 35146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-fzo 13660 df-hash 14322 df-word 14497 df-mrex 35166 |
This theorem is referenced by: mexval2 35183 mrsubcv 35190 mrsubff 35192 mrsubrn 35193 mrsub0 35196 mrsubccat 35198 elmrsubrn 35200 mrsubco 35201 mrsubvrs 35202 mvhf 35238 msubvrs 35240 |
Copyright terms: Public domain | W3C validator |