Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrexval Structured version   Visualization version   GIF version

Theorem mrexval 35461
Description: The set of "raw expressions", which are expressions without a typecode, that is, just sequences of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrexval.c 𝐶 = (mCN‘𝑇)
mrexval.v 𝑉 = (mVR‘𝑇)
mrexval.r 𝑅 = (mREx‘𝑇)
Assertion
Ref Expression
mrexval (𝑇𝑊𝑅 = Word (𝐶𝑉))

Proof of Theorem mrexval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mrexval.r . 2 𝑅 = (mREx‘𝑇)
2 elex 3504 . . 3 (𝑇𝑊𝑇 ∈ V)
3 fveq2 6919 . . . . . . 7 (𝑡 = 𝑇 → (mCN‘𝑡) = (mCN‘𝑇))
4 mrexval.c . . . . . . 7 𝐶 = (mCN‘𝑇)
53, 4eqtr4di 2792 . . . . . 6 (𝑡 = 𝑇 → (mCN‘𝑡) = 𝐶)
6 fveq2 6919 . . . . . . 7 (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇))
7 mrexval.v . . . . . . 7 𝑉 = (mVR‘𝑇)
86, 7eqtr4di 2792 . . . . . 6 (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉)
95, 8uneq12d 4186 . . . . 5 (𝑡 = 𝑇 → ((mCN‘𝑡) ∪ (mVR‘𝑡)) = (𝐶𝑉))
10 wrdeq 14580 . . . . 5 (((mCN‘𝑡) ∪ (mVR‘𝑡)) = (𝐶𝑉) → Word ((mCN‘𝑡) ∪ (mVR‘𝑡)) = Word (𝐶𝑉))
119, 10syl 17 . . . 4 (𝑡 = 𝑇 → Word ((mCN‘𝑡) ∪ (mVR‘𝑡)) = Word (𝐶𝑉))
12 df-mrex 35446 . . . 4 mREx = (𝑡 ∈ V ↦ Word ((mCN‘𝑡) ∪ (mVR‘𝑡)))
13 fvex 6932 . . . . . 6 (mCN‘𝑡) ∈ V
14 fvex 6932 . . . . . 6 (mVR‘𝑡) ∈ V
1513, 14unex 7775 . . . . 5 ((mCN‘𝑡) ∪ (mVR‘𝑡)) ∈ V
1615wrdexi 14570 . . . 4 Word ((mCN‘𝑡) ∪ (mVR‘𝑡)) ∈ V
1711, 12, 16fvmpt3i 7032 . . 3 (𝑇 ∈ V → (mREx‘𝑇) = Word (𝐶𝑉))
182, 17syl 17 . 2 (𝑇𝑊 → (mREx‘𝑇) = Word (𝐶𝑉))
191, 18eqtrid 2786 1 (𝑇𝑊𝑅 = Word (𝐶𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2103  Vcvv 3482  cun 3968  cfv 6572  Word cword 14558  mCNcmcn 35420  mVRcmvar 35421  mRExcmrex 35426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-1st 8026  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-er 8759  df-map 8882  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-card 10004  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-nn 12290  df-n0 12550  df-z 12636  df-uz 12900  df-fz 13564  df-fzo 13708  df-hash 14376  df-word 14559  df-mrex 35446
This theorem is referenced by:  mexval2  35463  mrsubcv  35470  mrsubff  35472  mrsubrn  35473  mrsub0  35476  mrsubccat  35478  elmrsubrn  35480  mrsubco  35481  mrsubvrs  35482  mvhf  35518  msubvrs  35520
  Copyright terms: Public domain W3C validator