Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mrexval | Structured version Visualization version GIF version |
Description: The set of "raw expressions", which are expressions without a typecode, that is, just sequences of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mrexval.c | ⊢ 𝐶 = (mCN‘𝑇) |
mrexval.v | ⊢ 𝑉 = (mVR‘𝑇) |
mrexval.r | ⊢ 𝑅 = (mREx‘𝑇) |
Ref | Expression |
---|---|
mrexval | ⊢ (𝑇 ∈ 𝑊 → 𝑅 = Word (𝐶 ∪ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrexval.r | . 2 ⊢ 𝑅 = (mREx‘𝑇) | |
2 | elex 3426 | . . 3 ⊢ (𝑇 ∈ 𝑊 → 𝑇 ∈ V) | |
3 | fveq2 6717 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mCN‘𝑡) = (mCN‘𝑇)) | |
4 | mrexval.c | . . . . . . 7 ⊢ 𝐶 = (mCN‘𝑇) | |
5 | 3, 4 | eqtr4di 2796 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mCN‘𝑡) = 𝐶) |
6 | fveq2 6717 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇)) | |
7 | mrexval.v | . . . . . . 7 ⊢ 𝑉 = (mVR‘𝑇) | |
8 | 6, 7 | eqtr4di 2796 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉) |
9 | 5, 8 | uneq12d 4078 | . . . . 5 ⊢ (𝑡 = 𝑇 → ((mCN‘𝑡) ∪ (mVR‘𝑡)) = (𝐶 ∪ 𝑉)) |
10 | wrdeq 14091 | . . . . 5 ⊢ (((mCN‘𝑡) ∪ (mVR‘𝑡)) = (𝐶 ∪ 𝑉) → Word ((mCN‘𝑡) ∪ (mVR‘𝑡)) = Word (𝐶 ∪ 𝑉)) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝑡 = 𝑇 → Word ((mCN‘𝑡) ∪ (mVR‘𝑡)) = Word (𝐶 ∪ 𝑉)) |
12 | df-mrex 33161 | . . . 4 ⊢ mREx = (𝑡 ∈ V ↦ Word ((mCN‘𝑡) ∪ (mVR‘𝑡))) | |
13 | fvex 6730 | . . . . . 6 ⊢ (mCN‘𝑡) ∈ V | |
14 | fvex 6730 | . . . . . 6 ⊢ (mVR‘𝑡) ∈ V | |
15 | 13, 14 | unex 7531 | . . . . 5 ⊢ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ∈ V |
16 | 15 | wrdexi 14081 | . . . 4 ⊢ Word ((mCN‘𝑡) ∪ (mVR‘𝑡)) ∈ V |
17 | 11, 12, 16 | fvmpt3i 6823 | . . 3 ⊢ (𝑇 ∈ V → (mREx‘𝑇) = Word (𝐶 ∪ 𝑉)) |
18 | 2, 17 | syl 17 | . 2 ⊢ (𝑇 ∈ 𝑊 → (mREx‘𝑇) = Word (𝐶 ∪ 𝑉)) |
19 | 1, 18 | syl5eq 2790 | 1 ⊢ (𝑇 ∈ 𝑊 → 𝑅 = Word (𝐶 ∪ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ∪ cun 3864 ‘cfv 6380 Word cword 14069 mCNcmcn 33135 mVRcmvar 33136 mRExcmrex 33141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-fzo 13239 df-hash 13897 df-word 14070 df-mrex 33161 |
This theorem is referenced by: mexval2 33178 mrsubcv 33185 mrsubff 33187 mrsubrn 33188 mrsub0 33191 mrsubccat 33193 elmrsubrn 33195 mrsubco 33196 mrsubvrs 33197 mvhf 33233 msubvrs 33235 |
Copyright terms: Public domain | W3C validator |