Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ncolrot1 | Structured version Visualization version GIF version |
Description: Rotating non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
ncolrot | ⊢ (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
Ref | Expression |
---|---|
ncolrot1 | ⊢ (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ncolrot | . 2 ⊢ (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) | |
2 | tglngval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
3 | tglngval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglngval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | tglngval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | 5 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) → 𝐺 ∈ TarskiG) |
7 | tglngval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
8 | 7 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) → 𝑌 ∈ 𝑃) |
9 | tgcolg.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
10 | 9 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) → 𝑍 ∈ 𝑃) |
11 | tglngval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
12 | 11 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) → 𝑋 ∈ 𝑃) |
13 | simpr 488 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) | |
14 | 2, 3, 4, 6, 8, 10, 12, 13 | colrot2 26651 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
15 | 1, 14 | mtand 816 | 1 ⊢ (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∨ wo 847 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 TarskiGcstrkg 26521 Itvcitv 26527 LineGclng 26528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-trkgc 26539 df-trkgb 26540 df-trkgcb 26541 df-trkg 26544 |
This theorem is referenced by: outpasch 26846 acopy 26924 cgrg3col4 26944 isoas 26955 |
Copyright terms: Public domain | W3C validator |