| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > colrot2 | Structured version Visualization version GIF version | ||
| Description: Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
| Ref | Expression |
|---|---|
| tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| colrot | ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
| Ref | Expression |
|---|---|
| colrot2 | ⊢ (𝜑 → (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglngval.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tglngval.l | . 2 ⊢ 𝐿 = (LineG‘𝐺) | |
| 3 | tglngval.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tglngval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | tglngval.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 6 | tgcolg.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
| 7 | tglngval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 8 | colrot | . . 3 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) | |
| 9 | 1, 2, 3, 4, 7, 5, 6, 8 | colrot1 28493 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) |
| 10 | 1, 2, 3, 4, 5, 6, 7, 9 | colrot1 28493 | 1 ⊢ (𝜑 → (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 TarskiGcstrkg 28361 Itvcitv 28367 LineGclng 28368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-iota 6472 df-fun 6521 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-trkgc 28382 df-trkgb 28383 df-trkgcb 28384 df-trkg 28387 |
| This theorem is referenced by: ncolrot1 28496 tglineeltr 28565 ncolncol 28580 symquadlem 28623 hlpasch 28690 hphl 28705 trgcopy 28738 |
| Copyright terms: Public domain | W3C validator |