MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colrot2 Structured version   Visualization version   GIF version

Theorem colrot2 28569
Description: Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
colrot (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
Assertion
Ref Expression
colrot2 (𝜑 → (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋))

Proof of Theorem colrot2
StepHypRef Expression
1 tglngval.p . 2 𝑃 = (Base‘𝐺)
2 tglngval.l . 2 𝐿 = (LineG‘𝐺)
3 tglngval.i . 2 𝐼 = (Itv‘𝐺)
4 tglngval.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tglngval.y . 2 (𝜑𝑌𝑃)
6 tgcolg.z . 2 (𝜑𝑍𝑃)
7 tglngval.x . 2 (𝜑𝑋𝑃)
8 colrot . . 3 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
91, 2, 3, 4, 7, 5, 6, 8colrot1 28568 . 2 (𝜑 → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
101, 2, 3, 4, 5, 6, 7, 9colrot1 28568 1 (𝜑 → (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1539  wcel 2107  cfv 6560  (class class class)co 7432  Basecbs 17248  TarskiGcstrkg 28436  Itvcitv 28442  LineGclng 28443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-iota 6513  df-fun 6562  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-trkgc 28457  df-trkgb 28458  df-trkgcb 28459  df-trkg 28462
This theorem is referenced by:  ncolrot1  28571  tglineeltr  28640  ncolncol  28655  symquadlem  28698  hlpasch  28765  hphl  28780  trgcopy  28813
  Copyright terms: Public domain W3C validator