Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > colrot2 | Structured version Visualization version GIF version |
Description: Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
colrot | ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
Ref | Expression |
---|---|
colrot2 | ⊢ (𝜑 → (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglngval.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tglngval.l | . 2 ⊢ 𝐿 = (LineG‘𝐺) | |
3 | tglngval.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tglngval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tglngval.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
6 | tgcolg.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
7 | tglngval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
8 | colrot | . . 3 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) | |
9 | 1, 2, 3, 4, 7, 5, 6, 8 | colrot1 26674 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) |
10 | 1, 2, 3, 4, 5, 6, 7, 9 | colrot1 26674 | 1 ⊢ (𝜑 → (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 847 = wceq 1543 ∈ wcel 2111 ‘cfv 6397 (class class class)co 7231 Basecbs 16784 TarskiGcstrkg 26545 Itvcitv 26551 LineGclng 26552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5206 ax-nul 5213 ax-pr 5336 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3422 df-sbc 3709 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-op 4562 df-uni 4834 df-br 5068 df-opab 5130 df-id 5469 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-iota 6355 df-fun 6399 df-fv 6405 df-ov 7234 df-oprab 7235 df-mpo 7236 df-trkgc 26563 df-trkgb 26564 df-trkgcb 26565 df-trkg 26568 |
This theorem is referenced by: ncolrot1 26677 tglineeltr 26746 ncolncol 26761 symquadlem 26804 hlpasch 26871 hphl 26886 trgcopy 26919 |
Copyright terms: Public domain | W3C validator |