![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > colrot2 | Structured version Visualization version GIF version |
Description: Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
colrot | ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
Ref | Expression |
---|---|
colrot2 | ⊢ (𝜑 → (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglngval.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tglngval.l | . 2 ⊢ 𝐿 = (LineG‘𝐺) | |
3 | tglngval.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tglngval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tglngval.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
6 | tgcolg.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
7 | tglngval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
8 | colrot | . . 3 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) | |
9 | 1, 2, 3, 4, 7, 5, 6, 8 | colrot1 28582 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) |
10 | 1, 2, 3, 4, 5, 6, 7, 9 | colrot1 28582 | 1 ⊢ (𝜑 → (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 TarskiGcstrkg 28450 Itvcitv 28456 LineGclng 28457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-trkgc 28471 df-trkgb 28472 df-trkgcb 28473 df-trkg 28476 |
This theorem is referenced by: ncolrot1 28585 tglineeltr 28654 ncolncol 28669 symquadlem 28712 hlpasch 28779 hphl 28794 trgcopy 28827 |
Copyright terms: Public domain | W3C validator |