![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > colrot2 | Structured version Visualization version GIF version |
Description: Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
colrot | ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
Ref | Expression |
---|---|
colrot2 | ⊢ (𝜑 → (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglngval.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tglngval.l | . 2 ⊢ 𝐿 = (LineG‘𝐺) | |
3 | tglngval.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tglngval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tglngval.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
6 | tgcolg.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
7 | tglngval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
8 | colrot | . . 3 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) | |
9 | 1, 2, 3, 4, 7, 5, 6, 8 | colrot1 28244 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) |
10 | 1, 2, 3, 4, 5, 6, 7, 9 | colrot1 28244 | 1 ⊢ (𝜑 → (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 TarskiGcstrkg 28112 Itvcitv 28118 LineGclng 28119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-trkgc 28133 df-trkgb 28134 df-trkgcb 28135 df-trkg 28138 |
This theorem is referenced by: ncolrot1 28247 tglineeltr 28316 ncolncol 28331 symquadlem 28374 hlpasch 28441 hphl 28456 trgcopy 28489 |
Copyright terms: Public domain | W3C validator |