MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colrot2 Structured version   Visualization version   GIF version

Theorem colrot2 28245
Description: Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
colrot (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
Assertion
Ref Expression
colrot2 (𝜑 → (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋))

Proof of Theorem colrot2
StepHypRef Expression
1 tglngval.p . 2 𝑃 = (Base‘𝐺)
2 tglngval.l . 2 𝐿 = (LineG‘𝐺)
3 tglngval.i . 2 𝐼 = (Itv‘𝐺)
4 tglngval.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tglngval.y . 2 (𝜑𝑌𝑃)
6 tgcolg.z . 2 (𝜑𝑍𝑃)
7 tglngval.x . 2 (𝜑𝑋𝑃)
8 colrot . . 3 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
91, 2, 3, 4, 7, 5, 6, 8colrot1 28244 . 2 (𝜑 → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
101, 2, 3, 4, 5, 6, 7, 9colrot1 28244 1 (𝜑 → (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844   = wceq 1540  wcel 2105  cfv 6543  (class class class)co 7412  Basecbs 17151  TarskiGcstrkg 28112  Itvcitv 28118  LineGclng 28119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-trkgc 28133  df-trkgb 28134  df-trkgcb 28135  df-trkg 28138
This theorem is referenced by:  ncolrot1  28247  tglineeltr  28316  ncolncol  28331  symquadlem  28374  hlpasch  28441  hphl  28456  trgcopy  28489
  Copyright terms: Public domain W3C validator