MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colrot2 Structured version   Visualization version   GIF version

Theorem colrot2 28538
Description: Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
colrot (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
Assertion
Ref Expression
colrot2 (𝜑 → (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋))

Proof of Theorem colrot2
StepHypRef Expression
1 tglngval.p . 2 𝑃 = (Base‘𝐺)
2 tglngval.l . 2 𝐿 = (LineG‘𝐺)
3 tglngval.i . 2 𝐼 = (Itv‘𝐺)
4 tglngval.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tglngval.y . 2 (𝜑𝑌𝑃)
6 tgcolg.z . 2 (𝜑𝑍𝑃)
7 tglngval.x . 2 (𝜑𝑋𝑃)
8 colrot . . 3 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
91, 2, 3, 4, 7, 5, 6, 8colrot1 28537 . 2 (𝜑 → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
101, 2, 3, 4, 5, 6, 7, 9colrot1 28537 1 (𝜑 → (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17120  TarskiGcstrkg 28405  Itvcitv 28411  LineGclng 28412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-trkgc 28426  df-trkgb 28427  df-trkgcb 28428  df-trkg 28431
This theorem is referenced by:  ncolrot1  28540  tglineeltr  28609  ncolncol  28624  symquadlem  28667  hlpasch  28734  hphl  28749  trgcopy  28782
  Copyright terms: Public domain W3C validator