![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ncolrot2 | Structured version Visualization version GIF version |
Description: Rotating non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
ncolrot | ⊢ (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
Ref | Expression |
---|---|
ncolrot2 | ⊢ (𝜑 → ¬ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ncolrot | . 2 ⊢ (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) | |
2 | tglngval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
3 | tglngval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglngval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | tglngval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → 𝐺 ∈ TarskiG) |
7 | tgcolg.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → 𝑍 ∈ 𝑃) |
9 | tglngval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → 𝑋 ∈ 𝑃) |
11 | tglngval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
12 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → 𝑌 ∈ 𝑃) |
13 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) | |
14 | 2, 3, 4, 6, 8, 10, 12, 13 | colrot1 28585 | . 2 ⊢ ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
15 | 1, 14 | mtand 815 | 1 ⊢ (𝜑 → ¬ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 TarskiGcstrkg 28453 Itvcitv 28459 LineGclng 28460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-trkgc 28474 df-trkgb 28475 df-trkgcb 28476 df-trkg 28479 |
This theorem is referenced by: midexlem 28718 perpneq 28740 opphllem 28761 outpasch 28781 hlpasch 28782 trgcopy 28830 acopyeu 28860 |
Copyright terms: Public domain | W3C validator |