MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncolrot2 Structured version   Visualization version   GIF version

Theorem ncolrot2 28490
Description: Rotating non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
ncolrot (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
Assertion
Ref Expression
ncolrot2 (𝜑 → ¬ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋))

Proof of Theorem ncolrot2
StepHypRef Expression
1 ncolrot . 2 (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
2 tglngval.p . . 3 𝑃 = (Base‘𝐺)
3 tglngval.l . . 3 𝐿 = (LineG‘𝐺)
4 tglngval.i . . 3 𝐼 = (Itv‘𝐺)
5 tglngval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
65adantr 480 . . 3 ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → 𝐺 ∈ TarskiG)
7 tgcolg.z . . . 4 (𝜑𝑍𝑃)
87adantr 480 . . 3 ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → 𝑍𝑃)
9 tglngval.x . . . 4 (𝜑𝑋𝑃)
109adantr 480 . . 3 ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → 𝑋𝑃)
11 tglngval.y . . . 4 (𝜑𝑌𝑃)
1211adantr 480 . . 3 ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → 𝑌𝑃)
13 simpr 484 . . 3 ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋))
142, 3, 4, 6, 8, 10, 12, 13colrot1 28486 . 2 ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
151, 14mtand 815 1 (𝜑 → ¬ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  TarskiGcstrkg 28354  Itvcitv 28360  LineGclng 28361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-trkgc 28375  df-trkgb 28376  df-trkgcb 28377  df-trkg 28380
This theorem is referenced by:  midexlem  28619  perpneq  28641  opphllem  28662  outpasch  28682  hlpasch  28683  trgcopy  28731  acopyeu  28761
  Copyright terms: Public domain W3C validator