MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncolrot2 Structured version   Visualization version   GIF version

Theorem ncolrot2 26828
Description: Rotating non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
ncolrot (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
Assertion
Ref Expression
ncolrot2 (𝜑 → ¬ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋))

Proof of Theorem ncolrot2
StepHypRef Expression
1 ncolrot . 2 (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
2 tglngval.p . . 3 𝑃 = (Base‘𝐺)
3 tglngval.l . . 3 𝐿 = (LineG‘𝐺)
4 tglngval.i . . 3 𝐼 = (Itv‘𝐺)
5 tglngval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
65adantr 480 . . 3 ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → 𝐺 ∈ TarskiG)
7 tgcolg.z . . . 4 (𝜑𝑍𝑃)
87adantr 480 . . 3 ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → 𝑍𝑃)
9 tglngval.x . . . 4 (𝜑𝑋𝑃)
109adantr 480 . . 3 ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → 𝑋𝑃)
11 tglngval.y . . . 4 (𝜑𝑌𝑃)
1211adantr 480 . . 3 ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → 𝑌𝑃)
13 simpr 484 . . 3 ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋))
142, 3, 4, 6, 8, 10, 12, 13colrot1 26824 . 2 ((𝜑 ∧ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋)) → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
151, 14mtand 812 1 (𝜑 → ¬ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  TarskiGcstrkg 26693  Itvcitv 26699  LineGclng 26700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkg 26718
This theorem is referenced by:  midexlem  26957  perpneq  26979  opphllem  27000  outpasch  27020  hlpasch  27021  trgcopy  27069  acopyeu  27099
  Copyright terms: Public domain W3C validator