MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acopy Structured version   Visualization version   GIF version

Theorem acopy 28841
Description: Angle construction. Theorem 11.15 of [Schwabhauser] p. 98. This is Hilbert's axiom III.4 for geometry. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
dfcgra2.p 𝑃 = (Base‘𝐺)
dfcgra2.i 𝐼 = (Itv‘𝐺)
dfcgra2.m = (dist‘𝐺)
dfcgra2.g (𝜑𝐺 ∈ TarskiG)
dfcgra2.a (𝜑𝐴𝑃)
dfcgra2.b (𝜑𝐵𝑃)
dfcgra2.c (𝜑𝐶𝑃)
dfcgra2.d (𝜑𝐷𝑃)
dfcgra2.e (𝜑𝐸𝑃)
dfcgra2.f (𝜑𝐹𝑃)
acopy.l 𝐿 = (LineG‘𝐺)
acopy.1 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
acopy.2 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
Assertion
Ref Expression
acopy (𝜑 → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
Distinct variable groups:   ,𝑓   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓   𝐷,𝑓   𝑓,𝐸   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼   𝑃,𝑓   𝑓,𝐿   𝜑,𝑓

Proof of Theorem acopy
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 dfcgra2.p . . . 4 𝑃 = (Base‘𝐺)
2 dfcgra2.m . . . 4 = (dist‘𝐺)
3 dfcgra2.i . . . 4 𝐼 = (Itv‘𝐺)
4 acopy.l . . . 4 𝐿 = (LineG‘𝐺)
5 eqid 2737 . . . 4 (hlG‘𝐺) = (hlG‘𝐺)
6 dfcgra2.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76ad2antrr 726 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐺 ∈ TarskiG)
8 dfcgra2.a . . . . 5 (𝜑𝐴𝑃)
98ad2antrr 726 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐴𝑃)
10 dfcgra2.b . . . . 5 (𝜑𝐵𝑃)
1110ad2antrr 726 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐵𝑃)
12 dfcgra2.c . . . . 5 (𝜑𝐶𝑃)
1312ad2antrr 726 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐶𝑃)
14 simplr 769 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑𝑃)
15 dfcgra2.e . . . . 5 (𝜑𝐸𝑃)
1615ad2antrr 726 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐸𝑃)
17 dfcgra2.f . . . . 5 (𝜑𝐹𝑃)
1817ad2antrr 726 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐹𝑃)
19 acopy.1 . . . . 5 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
2019ad2antrr 726 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
21 dfcgra2.d . . . . . 6 (𝜑𝐷𝑃)
2221ad2antrr 726 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐷𝑃)
23 acopy.2 . . . . . 6 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
2423ad2antrr 726 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
25 simprl 771 . . . . . 6 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑((hlG‘𝐺)‘𝐸)𝐷)
261, 3, 5, 14, 22, 16, 7, 4, 25hlln 28615 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑 ∈ (𝐷𝐿𝐸))
271, 3, 5, 14, 22, 16, 7, 25hlne1 28613 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑𝐸)
281, 3, 4, 7, 22, 16, 18, 14, 24, 26, 27ncolncol 28654 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ¬ (𝑑 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
29 simprr 773 . . . . . 6 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝐸 𝑑) = (𝐵 𝐴))
3029eqcomd 2743 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝐵 𝐴) = (𝐸 𝑑))
311, 2, 3, 7, 11, 9, 16, 14, 30tgcgrcomlr 28488 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝐴 𝐵) = (𝑑 𝐸))
321, 2, 3, 4, 5, 7, 9, 11, 13, 14, 16, 18, 20, 28, 31trgcopy 28812 . . 3 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹))
337ad2antrr 726 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝐺 ∈ TarskiG)
349ad2antrr 726 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝐴𝑃)
3511ad2antrr 726 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝐵𝑃)
3613ad2antrr 726 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝐶𝑃)
3714ad2antrr 726 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝑑𝑃)
3816ad2antrr 726 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝐸𝑃)
39 simplr 769 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝑓𝑃)
401, 3, 4, 6, 8, 10, 12, 19ncolne1 28633 . . . . . . . . 9 (𝜑𝐴𝐵)
4140ad4antr 732 . . . . . . . 8 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝐴𝐵)
421, 4, 3, 6, 10, 12, 8, 19ncolrot1 28570 . . . . . . . . . 10 (𝜑 → ¬ (𝐵 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴))
431, 3, 4, 6, 10, 12, 8, 42ncolne1 28633 . . . . . . . . 9 (𝜑𝐵𝐶)
4443ad4antr 732 . . . . . . . 8 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝐵𝐶)
45 simpr 484 . . . . . . . 8 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩)
461, 3, 33, 5, 34, 35, 36, 37, 38, 39, 41, 44, 45cgrcgra 28829 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝑓”⟩)
4722ad2antrr 726 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝐷𝑃)
4825ad2antrr 726 . . . . . . . 8 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝑑((hlG‘𝐺)‘𝐸)𝐷)
491, 3, 5, 37, 47, 38, 33, 48hlcomd 28612 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝐷((hlG‘𝐺)‘𝐸)𝑑)
501, 3, 5, 33, 34, 35, 36, 37, 38, 39, 46, 47, 49cgrahl1 28824 . . . . . 6 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑓”⟩)
5150ex 412 . . . . 5 ((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩ → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑓”⟩))
52 simpr 484 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹)
537ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝐺 ∈ TarskiG)
5414ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝑑𝑃)
5516ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝐸𝑃)
5627ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝑑𝐸)
571, 3, 4, 6, 21, 15, 17, 23ncolne1 28633 . . . . . . . . . . . 12 (𝜑𝐷𝐸)
581, 3, 4, 6, 21, 15, 57tgelrnln 28638 . . . . . . . . . . 11 (𝜑 → (𝐷𝐿𝐸) ∈ ran 𝐿)
5958ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → (𝐷𝐿𝐸) ∈ ran 𝐿)
6026ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝑑 ∈ (𝐷𝐿𝐸))
611, 3, 4, 6, 21, 15, 57tglinerflx2 28642 . . . . . . . . . . 11 (𝜑𝐸 ∈ (𝐷𝐿𝐸))
6261ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝐸 ∈ (𝐷𝐿𝐸))
631, 3, 4, 53, 54, 55, 56, 56, 59, 60, 62tglinethru 28644 . . . . . . . . 9 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → (𝐷𝐿𝐸) = (𝑑𝐿𝐸))
6463fveq2d 6910 . . . . . . . 8 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → ((hpG‘𝐺)‘(𝐷𝐿𝐸)) = ((hpG‘𝐺)‘(𝑑𝐿𝐸)))
6564breqd 5154 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → (𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹))
6652, 65mpbird 257 . . . . . 6 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
6766ex 412 . . . . 5 ((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) → (𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
6851, 67anim12d 609 . . . 4 ((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) → ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)))
6968reximdva 3168 . . 3 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)))
7032, 69mpd 15 . 2 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
7140necomd 2996 . . 3 (𝜑𝐵𝐴)
721, 3, 5, 15, 10, 8, 6, 21, 2, 57, 71hlcgrex 28624 . 2 (𝜑 → ∃𝑑𝑃 (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴)))
7370, 72r19.29a 3162 1 (𝜑 → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  wrex 3070   class class class wbr 5143  ran crn 5686  cfv 6561  (class class class)co 7431  ⟨“cs3 14881  Basecbs 17247  distcds 17306  TarskiGcstrkg 28435  Itvcitv 28441  LineGclng 28442  cgrGccgrg 28518  hlGchlg 28608  hpGchpg 28765  cgrAccgra 28815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-s2 14887  df-s3 14888  df-trkgc 28456  df-trkgb 28457  df-trkgcb 28458  df-trkgld 28460  df-trkg 28461  df-cgrg 28519  df-ismt 28541  df-leg 28591  df-hlg 28609  df-mir 28661  df-rag 28702  df-perpg 28704  df-hpg 28766  df-mid 28782  df-lmi 28783  df-cgra 28816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator