MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acopy Structured version   Visualization version   GIF version

Theorem acopy 28766
Description: Angle construction. Theorem 11.15 of [Schwabhauser] p. 98. This is Hilbert's axiom III.4 for geometry. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
dfcgra2.p 𝑃 = (Base‘𝐺)
dfcgra2.i 𝐼 = (Itv‘𝐺)
dfcgra2.m = (dist‘𝐺)
dfcgra2.g (𝜑𝐺 ∈ TarskiG)
dfcgra2.a (𝜑𝐴𝑃)
dfcgra2.b (𝜑𝐵𝑃)
dfcgra2.c (𝜑𝐶𝑃)
dfcgra2.d (𝜑𝐷𝑃)
dfcgra2.e (𝜑𝐸𝑃)
dfcgra2.f (𝜑𝐹𝑃)
acopy.l 𝐿 = (LineG‘𝐺)
acopy.1 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
acopy.2 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
Assertion
Ref Expression
acopy (𝜑 → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
Distinct variable groups:   ,𝑓   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓   𝐷,𝑓   𝑓,𝐸   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼   𝑃,𝑓   𝑓,𝐿   𝜑,𝑓

Proof of Theorem acopy
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 dfcgra2.p . . . 4 𝑃 = (Base‘𝐺)
2 dfcgra2.m . . . 4 = (dist‘𝐺)
3 dfcgra2.i . . . 4 𝐼 = (Itv‘𝐺)
4 acopy.l . . . 4 𝐿 = (LineG‘𝐺)
5 eqid 2730 . . . 4 (hlG‘𝐺) = (hlG‘𝐺)
6 dfcgra2.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76ad2antrr 726 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐺 ∈ TarskiG)
8 dfcgra2.a . . . . 5 (𝜑𝐴𝑃)
98ad2antrr 726 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐴𝑃)
10 dfcgra2.b . . . . 5 (𝜑𝐵𝑃)
1110ad2antrr 726 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐵𝑃)
12 dfcgra2.c . . . . 5 (𝜑𝐶𝑃)
1312ad2antrr 726 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐶𝑃)
14 simplr 768 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑𝑃)
15 dfcgra2.e . . . . 5 (𝜑𝐸𝑃)
1615ad2antrr 726 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐸𝑃)
17 dfcgra2.f . . . . 5 (𝜑𝐹𝑃)
1817ad2antrr 726 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐹𝑃)
19 acopy.1 . . . . 5 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
2019ad2antrr 726 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
21 dfcgra2.d . . . . . 6 (𝜑𝐷𝑃)
2221ad2antrr 726 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐷𝑃)
23 acopy.2 . . . . . 6 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
2423ad2antrr 726 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
25 simprl 770 . . . . . 6 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑((hlG‘𝐺)‘𝐸)𝐷)
261, 3, 5, 14, 22, 16, 7, 4, 25hlln 28540 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑 ∈ (𝐷𝐿𝐸))
271, 3, 5, 14, 22, 16, 7, 25hlne1 28538 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑𝐸)
281, 3, 4, 7, 22, 16, 18, 14, 24, 26, 27ncolncol 28579 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ¬ (𝑑 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
29 simprr 772 . . . . . 6 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝐸 𝑑) = (𝐵 𝐴))
3029eqcomd 2736 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝐵 𝐴) = (𝐸 𝑑))
311, 2, 3, 7, 11, 9, 16, 14, 30tgcgrcomlr 28413 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝐴 𝐵) = (𝑑 𝐸))
321, 2, 3, 4, 5, 7, 9, 11, 13, 14, 16, 18, 20, 28, 31trgcopy 28737 . . 3 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹))
337ad2antrr 726 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝐺 ∈ TarskiG)
349ad2antrr 726 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝐴𝑃)
3511ad2antrr 726 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝐵𝑃)
3613ad2antrr 726 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝐶𝑃)
3714ad2antrr 726 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝑑𝑃)
3816ad2antrr 726 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝐸𝑃)
39 simplr 768 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝑓𝑃)
401, 3, 4, 6, 8, 10, 12, 19ncolne1 28558 . . . . . . . . 9 (𝜑𝐴𝐵)
4140ad4antr 732 . . . . . . . 8 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝐴𝐵)
421, 4, 3, 6, 10, 12, 8, 19ncolrot1 28495 . . . . . . . . . 10 (𝜑 → ¬ (𝐵 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴))
431, 3, 4, 6, 10, 12, 8, 42ncolne1 28558 . . . . . . . . 9 (𝜑𝐵𝐶)
4443ad4antr 732 . . . . . . . 8 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝐵𝐶)
45 simpr 484 . . . . . . . 8 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩)
461, 3, 33, 5, 34, 35, 36, 37, 38, 39, 41, 44, 45cgrcgra 28754 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝑓”⟩)
4722ad2antrr 726 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝐷𝑃)
4825ad2antrr 726 . . . . . . . 8 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝑑((hlG‘𝐺)‘𝐸)𝐷)
491, 3, 5, 37, 47, 38, 33, 48hlcomd 28537 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → 𝐷((hlG‘𝐺)‘𝐸)𝑑)
501, 3, 5, 33, 34, 35, 36, 37, 38, 39, 46, 47, 49cgrahl1 28749 . . . . . 6 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑓”⟩)
5150ex 412 . . . . 5 ((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩ → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑓”⟩))
52 simpr 484 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹)
537ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝐺 ∈ TarskiG)
5414ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝑑𝑃)
5516ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝐸𝑃)
5627ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝑑𝐸)
571, 3, 4, 6, 21, 15, 17, 23ncolne1 28558 . . . . . . . . . . . 12 (𝜑𝐷𝐸)
581, 3, 4, 6, 21, 15, 57tgelrnln 28563 . . . . . . . . . . 11 (𝜑 → (𝐷𝐿𝐸) ∈ ran 𝐿)
5958ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → (𝐷𝐿𝐸) ∈ ran 𝐿)
6026ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝑑 ∈ (𝐷𝐿𝐸))
611, 3, 4, 6, 21, 15, 57tglinerflx2 28567 . . . . . . . . . . 11 (𝜑𝐸 ∈ (𝐷𝐿𝐸))
6261ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝐸 ∈ (𝐷𝐿𝐸))
631, 3, 4, 53, 54, 55, 56, 56, 59, 60, 62tglinethru 28569 . . . . . . . . 9 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → (𝐷𝐿𝐸) = (𝑑𝐿𝐸))
6463fveq2d 6864 . . . . . . . 8 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → ((hpG‘𝐺)‘(𝐷𝐿𝐸)) = ((hpG‘𝐺)‘(𝑑𝐿𝐸)))
6564breqd 5120 . . . . . . 7 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → (𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹))
6652, 65mpbird 257 . . . . . 6 (((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
6766ex 412 . . . . 5 ((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) → (𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
6851, 67anim12d 609 . . . 4 ((((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑓𝑃) → ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)))
6968reximdva 3147 . . 3 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)))
7032, 69mpd 15 . 2 (((𝜑𝑑𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
7140necomd 2981 . . 3 (𝜑𝐵𝐴)
721, 3, 5, 15, 10, 8, 6, 21, 2, 57, 71hlcgrex 28549 . 2 (𝜑 → ∃𝑑𝑃 (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴)))
7370, 72r19.29a 3142 1 (𝜑 → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wrex 3054   class class class wbr 5109  ran crn 5641  cfv 6513  (class class class)co 7389  ⟨“cs3 14814  Basecbs 17185  distcds 17235  TarskiGcstrkg 28360  Itvcitv 28366  LineGclng 28367  cgrGccgrg 28443  hlGchlg 28533  hpGchpg 28690  cgrAccgra 28740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-oadd 8440  df-er 8673  df-map 8803  df-pm 8804  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-dju 9860  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-n0 12449  df-xnn0 12522  df-z 12536  df-uz 12800  df-fz 13475  df-fzo 13622  df-hash 14302  df-word 14485  df-concat 14542  df-s1 14567  df-s2 14820  df-s3 14821  df-trkgc 28381  df-trkgb 28382  df-trkgcb 28383  df-trkgld 28385  df-trkg 28386  df-cgrg 28444  df-ismt 28466  df-leg 28516  df-hlg 28534  df-mir 28586  df-rag 28627  df-perpg 28629  df-hpg 28691  df-mid 28707  df-lmi 28708  df-cgra 28741
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator