Step | Hyp | Ref
| Expression |
1 | | dfcgra2.p |
. . . 4
⊢ 𝑃 = (Base‘𝐺) |
2 | | dfcgra2.m |
. . . 4
⊢ − =
(dist‘𝐺) |
3 | | dfcgra2.i |
. . . 4
⊢ 𝐼 = (Itv‘𝐺) |
4 | | acopy.l |
. . . 4
⊢ 𝐿 = (LineG‘𝐺) |
5 | | eqid 2738 |
. . . 4
⊢
(hlG‘𝐺) =
(hlG‘𝐺) |
6 | | dfcgra2.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
7 | 6 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐺 ∈ TarskiG) |
8 | | dfcgra2.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
9 | 8 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐴 ∈ 𝑃) |
10 | | dfcgra2.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
11 | 10 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐵 ∈ 𝑃) |
12 | | dfcgra2.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
13 | 12 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐶 ∈ 𝑃) |
14 | | simplr 766 |
. . . 4
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝑑 ∈ 𝑃) |
15 | | dfcgra2.e |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ 𝑃) |
16 | 15 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐸 ∈ 𝑃) |
17 | | dfcgra2.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ 𝑃) |
18 | 17 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐹 ∈ 𝑃) |
19 | | acopy.1 |
. . . . 5
⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) |
20 | 19 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) |
21 | | dfcgra2.d |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
22 | 21 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐷 ∈ 𝑃) |
23 | | acopy.2 |
. . . . . 6
⊢ (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹)) |
24 | 23 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹)) |
25 | | simprl 768 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝑑((hlG‘𝐺)‘𝐸)𝐷) |
26 | 1, 3, 5, 14, 22, 16, 7, 4, 25 | hlln 26968 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝑑 ∈ (𝐷𝐿𝐸)) |
27 | 1, 3, 5, 14, 22, 16, 7, 25 | hlne1 26966 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝑑 ≠ 𝐸) |
28 | 1, 3, 4, 7, 22, 16, 18, 14, 24, 26, 27 | ncolncol 27007 |
. . . 4
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → ¬ (𝑑 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹)) |
29 | | simprr 770 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → (𝐸 − 𝑑) = (𝐵 − 𝐴)) |
30 | 29 | eqcomd 2744 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → (𝐵 − 𝐴) = (𝐸 − 𝑑)) |
31 | 1, 2, 3, 7, 11, 9,
16, 14, 30 | tgcgrcomlr 26841 |
. . . 4
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → (𝐴 − 𝐵) = (𝑑 − 𝐸)) |
32 | 1, 2, 3, 4, 5, 7, 9, 11, 13, 14, 16, 18, 20, 28, 31 | trgcopy 27165 |
. . 3
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → ∃𝑓 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹)) |
33 | 7 | ad2antrr 723 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑓”〉) → 𝐺 ∈ TarskiG) |
34 | 9 | ad2antrr 723 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑓”〉) → 𝐴 ∈ 𝑃) |
35 | 11 | ad2antrr 723 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑓”〉) → 𝐵 ∈ 𝑃) |
36 | 13 | ad2antrr 723 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑓”〉) → 𝐶 ∈ 𝑃) |
37 | 14 | ad2antrr 723 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑓”〉) → 𝑑 ∈ 𝑃) |
38 | 16 | ad2antrr 723 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑓”〉) → 𝐸 ∈ 𝑃) |
39 | | simplr 766 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑓”〉) → 𝑓 ∈ 𝑃) |
40 | 1, 3, 4, 6, 8, 10,
12, 19 | ncolne1 26986 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ≠ 𝐵) |
41 | 40 | ad4antr 729 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑓”〉) → 𝐴 ≠ 𝐵) |
42 | 1, 4, 3, 6, 10, 12, 8, 19 | ncolrot1 26923 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ (𝐵 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴)) |
43 | 1, 3, 4, 6, 10, 12, 8, 42 | ncolne1 26986 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ≠ 𝐶) |
44 | 43 | ad4antr 729 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑓”〉) → 𝐵 ≠ 𝐶) |
45 | | simpr 485 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑓”〉) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑓”〉) |
46 | 1, 3, 33, 5, 34, 35, 36, 37, 38, 39, 41, 44, 45 | cgrcgra 27182 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑓”〉) → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝑑𝐸𝑓”〉) |
47 | 22 | ad2antrr 723 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑓”〉) → 𝐷 ∈ 𝑃) |
48 | 25 | ad2antrr 723 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑓”〉) → 𝑑((hlG‘𝐺)‘𝐸)𝐷) |
49 | 1, 3, 5, 37, 47, 38, 33, 48 | hlcomd 26965 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑓”〉) → 𝐷((hlG‘𝐺)‘𝐸)𝑑) |
50 | 1, 3, 5, 33, 34, 35, 36, 37, 38, 39, 46, 47, 49 | cgrahl1 27177 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑓”〉) → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑓”〉) |
51 | 50 | ex 413 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑓”〉 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑓”〉)) |
52 | | simpr 485 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) |
53 | 7 | ad2antrr 723 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝐺 ∈ TarskiG) |
54 | 14 | ad2antrr 723 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝑑 ∈ 𝑃) |
55 | 16 | ad2antrr 723 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝐸 ∈ 𝑃) |
56 | 27 | ad2antrr 723 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝑑 ≠ 𝐸) |
57 | 1, 3, 4, 6, 21, 15, 17, 23 | ncolne1 26986 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐷 ≠ 𝐸) |
58 | 1, 3, 4, 6, 21, 15, 57 | tgelrnln 26991 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐷𝐿𝐸) ∈ ran 𝐿) |
59 | 58 | ad4antr 729 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → (𝐷𝐿𝐸) ∈ ran 𝐿) |
60 | 26 | ad2antrr 723 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝑑 ∈ (𝐷𝐿𝐸)) |
61 | 1, 3, 4, 6, 21, 15, 57 | tglinerflx2 26995 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ (𝐷𝐿𝐸)) |
62 | 61 | ad4antr 729 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝐸 ∈ (𝐷𝐿𝐸)) |
63 | 1, 3, 4, 53, 54, 55, 56, 56, 59, 60, 62 | tglinethru 26997 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → (𝐷𝐿𝐸) = (𝑑𝐿𝐸)) |
64 | 63 | fveq2d 6778 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → ((hpG‘𝐺)‘(𝐷𝐿𝐸)) = ((hpG‘𝐺)‘(𝑑𝐿𝐸))) |
65 | 64 | breqd 5085 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → (𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹 ↔ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹)) |
66 | 52, 65 | mpbird 256 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) |
67 | 66 | ex 413 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) → (𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹 → 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) |
68 | 51, 67 | anim12d 609 |
. . . 4
⊢ ((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑓 ∈ 𝑃) → ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))) |
69 | 68 | reximdva 3203 |
. . 3
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → (∃𝑓 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) → ∃𝑓 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))) |
70 | 32, 69 | mpd 15 |
. 2
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → ∃𝑓 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) |
71 | 40 | necomd 2999 |
. . 3
⊢ (𝜑 → 𝐵 ≠ 𝐴) |
72 | 1, 3, 5, 15, 10, 8, 6, 21, 2,
57, 71 | hlcgrex 26977 |
. 2
⊢ (𝜑 → ∃𝑑 ∈ 𝑃 (𝑑((hlG‘𝐺)‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) |
73 | 70, 72 | r19.29a 3218 |
1
⊢ (𝜑 → ∃𝑓 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) |