Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg47 Structured version   Visualization version   GIF version

Theorem cdlemg47 38051
 Description: Part of proof of Lemma G of [Crawley] p. 116, ninth line of third paragraph on p. 117: "we conclude that gf = fg." (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
cdlemg46.b 𝐵 = (Base‘𝐾)
cdlemg46.h 𝐻 = (LHyp‘𝐾)
cdlemg46.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg46.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg47 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹𝐺) = (𝐺𝐹))
Distinct variable groups:   ,𝐹   ,𝐻   ,𝐾   𝑅,   𝑇,   ,𝑊
Allowed substitution hints:   𝐵()   𝐺()

Proof of Theorem cdlemg47
StepHypRef Expression
1 simp11 1200 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2l 1196 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝑇)
3 simp12 1201 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐹𝑇)
4 cdlemg46.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
5 cdlemg46.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
64, 5ltrnco 38034 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐹𝑇) → (𝐹) ∈ 𝑇)
71, 2, 3, 6syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹) ∈ 𝑇)
8 simp13 1202 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐺𝑇)
9 simp3 1135 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹)))
10 cdlemg46.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
11 cdlemg46.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
1210, 4, 5, 11cdlemg46 38050 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
131, 3, 2, 9, 12syl121anc 1372 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
14 simp2r 1197 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅𝐹) = (𝑅𝐺))
1513, 14neeqtrd 3056 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘(𝐹)) ≠ (𝑅𝐺))
164, 5, 11cdlemg44 38048 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹) ∈ 𝑇𝐺𝑇) ∧ (𝑅‘(𝐹)) ≠ (𝑅𝐺)) → ((𝐹) ∘ 𝐺) = (𝐺 ∘ (𝐹)))
171, 7, 8, 15, 16syl121anc 1372 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ((𝐹) ∘ 𝐺) = (𝐺 ∘ (𝐹)))
18 coass 6086 . . . . . 6 ((𝐺) ∘ 𝐹) = (𝐺 ∘ (𝐹))
1917, 18eqtr4di 2851 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ((𝐹) ∘ 𝐺) = ((𝐺) ∘ 𝐹))
20 simp33 1208 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅) ≠ (𝑅𝐹))
2120, 14neeqtrd 3056 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅) ≠ (𝑅𝐺))
224, 5, 11cdlemg44 38048 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐺𝑇) ∧ (𝑅) ≠ (𝑅𝐺)) → (𝐺) = (𝐺))
231, 2, 8, 21, 22syl121anc 1372 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐺) = (𝐺))
2423coeq1d 5697 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ((𝐺) ∘ 𝐹) = ((𝐺) ∘ 𝐹))
2519, 24eqtr4d 2836 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ((𝐹) ∘ 𝐺) = ((𝐺) ∘ 𝐹))
26 coass 6086 . . . 4 ((𝐹) ∘ 𝐺) = ( ∘ (𝐹𝐺))
27 coass 6086 . . . 4 ((𝐺) ∘ 𝐹) = ( ∘ (𝐺𝐹))
2825, 26, 273eqtr3g 2856 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ (𝐹𝐺)) = ( ∘ (𝐺𝐹)))
2928coeq2d 5698 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ ( ∘ (𝐹𝐺))) = ( ∘ ( ∘ (𝐺𝐹))))
30 coass 6086 . . . 4 (() ∘ (𝐹𝐺)) = ( ∘ ( ∘ (𝐹𝐺)))
3110, 4, 5ltrn1o 37439 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇) → :𝐵1-1-onto𝐵)
321, 2, 31syl2anc 587 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → :𝐵1-1-onto𝐵)
33 f1ococnv1 6619 . . . . . 6 (:𝐵1-1-onto𝐵 → () = ( I ↾ 𝐵))
3432, 33syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → () = ( I ↾ 𝐵))
3534coeq1d 5697 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (() ∘ (𝐹𝐺)) = (( I ↾ 𝐵) ∘ (𝐹𝐺)))
3630, 35syl5eqr 2847 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ ( ∘ (𝐹𝐺))) = (( I ↾ 𝐵) ∘ (𝐹𝐺)))
374, 5ltrnco 38034 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
381, 3, 8, 37syl3anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹𝐺) ∈ 𝑇)
3910, 4, 5ltrn1o 37439 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇) → (𝐹𝐺):𝐵1-1-onto𝐵)
401, 38, 39syl2anc 587 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹𝐺):𝐵1-1-onto𝐵)
41 f1of 6591 . . . 4 ((𝐹𝐺):𝐵1-1-onto𝐵 → (𝐹𝐺):𝐵𝐵)
42 fcoi2 6528 . . . 4 ((𝐹𝐺):𝐵𝐵 → (( I ↾ 𝐵) ∘ (𝐹𝐺)) = (𝐹𝐺))
4340, 41, 423syl 18 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (( I ↾ 𝐵) ∘ (𝐹𝐺)) = (𝐹𝐺))
4436, 43eqtrd 2833 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ ( ∘ (𝐹𝐺))) = (𝐹𝐺))
45 coass 6086 . . . 4 (() ∘ (𝐺𝐹)) = ( ∘ ( ∘ (𝐺𝐹)))
4634coeq1d 5697 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (() ∘ (𝐺𝐹)) = (( I ↾ 𝐵) ∘ (𝐺𝐹)))
4745, 46syl5eqr 2847 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ ( ∘ (𝐺𝐹))) = (( I ↾ 𝐵) ∘ (𝐺𝐹)))
484, 5ltrnco 38034 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐹𝑇) → (𝐺𝐹) ∈ 𝑇)
491, 8, 3, 48syl3anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐺𝐹) ∈ 𝑇)
5010, 4, 5ltrn1o 37439 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇) → (𝐺𝐹):𝐵1-1-onto𝐵)
511, 49, 50syl2anc 587 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐺𝐹):𝐵1-1-onto𝐵)
52 f1of 6591 . . . 4 ((𝐺𝐹):𝐵1-1-onto𝐵 → (𝐺𝐹):𝐵𝐵)
53 fcoi2 6528 . . . 4 ((𝐺𝐹):𝐵𝐵 → (( I ↾ 𝐵) ∘ (𝐺𝐹)) = (𝐺𝐹))
5451, 52, 533syl 18 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (( I ↾ 𝐵) ∘ (𝐺𝐹)) = (𝐺𝐹))
5547, 54eqtrd 2833 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ ( ∘ (𝐺𝐹))) = (𝐺𝐹))
5629, 44, 553eqtr3d 2841 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹𝐺) = (𝐺𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987   I cid 5425  ◡ccnv 5519   ↾ cres 5522   ∘ ccom 5524  ⟶wf 6321  –1-1-onto→wf1o 6324  ‘cfv 6325  Basecbs 16478  HLchlt 36665  LHypclh 37299  LTrncltrn 37416  trLctrl 37473 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-riotaBAD 36268 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5426  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-1st 7674  df-2nd 7675  df-undef 7925  df-map 8394  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-p1 17645  df-lat 17651  df-clat 17713  df-oposet 36491  df-ol 36493  df-oml 36494  df-covers 36581  df-ats 36582  df-atl 36613  df-cvlat 36637  df-hlat 36666  df-llines 36813  df-lplanes 36814  df-lvols 36815  df-lines 36816  df-psubsp 36818  df-pmap 36819  df-padd 37111  df-lhyp 37303  df-laut 37304  df-ldil 37419  df-ltrn 37420  df-trl 37474 This theorem is referenced by:  cdlemg48  38052
 Copyright terms: Public domain W3C validator