Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdlkreqN Structured version   Visualization version   GIF version

Theorem lcdlkreqN 41099
Description: Colinear functionals have equal kernels. (Contributed by NM, 28-Mar-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lcdlkreq.h 𝐻 = (LHyp‘𝐾)
lcdlkreq.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcdlkreq.l 𝐿 = (LKer‘𝑈)
lcdlkreq.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcdlkreq.o 0 = (0g𝐶)
lcdlkreq.n 𝑁 = (LSpan‘𝐶)
lcdlkreq.v 𝑉 = (Base‘𝐶)
lcdlkreq.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcdlkreq.i (𝜑𝐼𝑉)
lcdlkreq.g (𝜑𝐺 ∈ (𝑁‘{𝐼}))
lcdlkreq.z (𝜑𝐺0 )
Assertion
Ref Expression
lcdlkreqN (𝜑 → (𝐿𝐺) = (𝐿𝐼))

Proof of Theorem lcdlkreqN
StepHypRef Expression
1 eqid 2727 . 2 (LFnl‘𝑈) = (LFnl‘𝑈)
2 lcdlkreq.l . 2 𝐿 = (LKer‘𝑈)
3 eqid 2727 . 2 (LDual‘𝑈) = (LDual‘𝑈)
4 eqid 2727 . 2 (0g‘(LDual‘𝑈)) = (0g‘(LDual‘𝑈))
5 eqid 2727 . 2 (LSpan‘(LDual‘𝑈)) = (LSpan‘(LDual‘𝑈))
6 lcdlkreq.h . . 3 𝐻 = (LHyp‘𝐾)
7 lcdlkreq.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
8 lcdlkreq.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
96, 7, 8dvhlvec 40586 . 2 (𝜑𝑈 ∈ LVec)
10 lcdlkreq.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
11 lcdlkreq.v . . 3 𝑉 = (Base‘𝐶)
12 lcdlkreq.i . . 3 (𝜑𝐼𝑉)
136, 10, 11, 7, 1, 8, 12lcdvbaselfl 41072 . 2 (𝜑𝐼 ∈ (LFnl‘𝑈))
14 lcdlkreq.g . . . 4 (𝜑𝐺 ∈ (𝑁‘{𝐼}))
15 lcdlkreq.n . . . . 5 𝑁 = (LSpan‘𝐶)
1612snssd 4815 . . . . 5 (𝜑 → {𝐼} ⊆ 𝑉)
176, 7, 3, 5, 10, 11, 15, 8, 16lcdlsp 41098 . . . 4 (𝜑 → (𝑁‘{𝐼}) = ((LSpan‘(LDual‘𝑈))‘{𝐼}))
1814, 17eleqtrd 2830 . . 3 (𝜑𝐺 ∈ ((LSpan‘(LDual‘𝑈))‘{𝐼}))
19 lcdlkreq.z . . . 4 (𝜑𝐺0 )
20 lcdlkreq.o . . . . 5 0 = (0g𝐶)
216, 7, 3, 4, 10, 20, 8lcd0v2 41089 . . . 4 (𝜑0 = (0g‘(LDual‘𝑈)))
2219, 21neeqtrd 3006 . . 3 (𝜑𝐺 ≠ (0g‘(LDual‘𝑈)))
23 eldifsn 4793 . . 3 (𝐺 ∈ (((LSpan‘(LDual‘𝑈))‘{𝐼}) ∖ {(0g‘(LDual‘𝑈))}) ↔ (𝐺 ∈ ((LSpan‘(LDual‘𝑈))‘{𝐼}) ∧ 𝐺 ≠ (0g‘(LDual‘𝑈))))
2418, 22, 23sylanbrc 581 . 2 (𝜑𝐺 ∈ (((LSpan‘(LDual‘𝑈))‘{𝐼}) ∖ {(0g‘(LDual‘𝑈))}))
251, 2, 3, 4, 5, 9, 13, 24lkrlspeqN 38647 1 (𝜑 → (𝐿𝐺) = (𝐿𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2936  cdif 3944  {csn 4630  cfv 6551  Basecbs 17185  0gc0g 17426  LSpanclspn 20860  LFnlclfn 38533  LKerclk 38561  LDualcld 38599  HLchlt 38826  LHypclh 39461  DVecHcdvh 40555  LCDualclcd 41063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-riotaBAD 38429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-iin 5001  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7689  df-om 7875  df-1st 7997  df-2nd 7998  df-tpos 8236  df-undef 8283  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-er 8729  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-n0 12509  df-z 12595  df-uz 12859  df-fz 13523  df-struct 17121  df-sets 17138  df-slot 17156  df-ndx 17168  df-base 17186  df-ress 17215  df-plusg 17251  df-mulr 17252  df-sca 17254  df-vsca 17255  df-0g 17428  df-mre 17571  df-mrc 17572  df-acs 17574  df-proset 18292  df-poset 18310  df-plt 18327  df-lub 18343  df-glb 18344  df-join 18345  df-meet 18346  df-p0 18422  df-p1 18423  df-lat 18429  df-clat 18496  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-submnd 18746  df-grp 18898  df-minusg 18899  df-sbg 18900  df-subg 19083  df-cntz 19273  df-oppg 19302  df-lsm 19596  df-cmn 19742  df-abl 19743  df-mgp 20080  df-rng 20098  df-ur 20127  df-ring 20180  df-oppr 20278  df-dvdsr 20301  df-unit 20302  df-invr 20332  df-dvr 20345  df-drng 20631  df-lmod 20750  df-lss 20821  df-lsp 20861  df-lvec 20993  df-lsatoms 38452  df-lshyp 38453  df-lcv 38495  df-lfl 38534  df-lkr 38562  df-ldual 38600  df-oposet 38652  df-ol 38654  df-oml 38655  df-covers 38742  df-ats 38743  df-atl 38774  df-cvlat 38798  df-hlat 38827  df-llines 38975  df-lplanes 38976  df-lvols 38977  df-lines 38978  df-psubsp 38980  df-pmap 38981  df-padd 39273  df-lhyp 39465  df-laut 39466  df-ldil 39581  df-ltrn 39582  df-trl 39636  df-tgrp 40220  df-tendo 40232  df-edring 40234  df-dveca 40480  df-disoa 40506  df-dvech 40556  df-dib 40616  df-dic 40650  df-dih 40706  df-doch 40825  df-djh 40872  df-lcdual 41064
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator