Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ply1scln0 | Structured version Visualization version GIF version |
Description: Nonzero scalars create nonzero polynomials. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
ply1scl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1scl.a | ⊢ 𝐴 = (algSc‘𝑃) |
ply1scl0.z | ⊢ 0 = (0g‘𝑅) |
ply1scl0.y | ⊢ 𝑌 = (0g‘𝑃) |
ply1scln0.k | ⊢ 𝐾 = (Base‘𝑅) |
Ref | Expression |
---|---|
ply1scln0 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → (𝐴‘𝑋) ≠ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1scl.p | . . . . . . . 8 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | ply1scl.a | . . . . . . . 8 ⊢ 𝐴 = (algSc‘𝑃) | |
3 | ply1scln0.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝑅) | |
4 | eqid 2736 | . . . . . . . 8 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
5 | 1, 2, 3, 4 | ply1sclf1 21566 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝐴:𝐾–1-1→(Base‘𝑃)) |
6 | 5 | adantr 481 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → 𝐴:𝐾–1-1→(Base‘𝑃)) |
7 | simpr 485 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → 𝑋 ∈ 𝐾) | |
8 | ply1scl0.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
9 | 3, 8 | ring0cl 19903 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐾) |
10 | 9 | adantr 481 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → 0 ∈ 𝐾) |
11 | f1fveq 7191 | . . . . . 6 ⊢ ((𝐴:𝐾–1-1→(Base‘𝑃) ∧ (𝑋 ∈ 𝐾 ∧ 0 ∈ 𝐾)) → ((𝐴‘𝑋) = (𝐴‘ 0 ) ↔ 𝑋 = 0 )) | |
12 | 6, 7, 10, 11 | syl12anc 834 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → ((𝐴‘𝑋) = (𝐴‘ 0 ) ↔ 𝑋 = 0 )) |
13 | 12 | biimpd 228 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → ((𝐴‘𝑋) = (𝐴‘ 0 ) → 𝑋 = 0 )) |
14 | 13 | necon3d 2961 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝑋 ≠ 0 → (𝐴‘𝑋) ≠ (𝐴‘ 0 ))) |
15 | 14 | 3impia 1116 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → (𝐴‘𝑋) ≠ (𝐴‘ 0 )) |
16 | ply1scl0.y | . . . 4 ⊢ 𝑌 = (0g‘𝑃) | |
17 | 1, 2, 8, 16 | ply1scl0 21567 | . . 3 ⊢ (𝑅 ∈ Ring → (𝐴‘ 0 ) = 𝑌) |
18 | 17 | 3ad2ant1 1132 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → (𝐴‘ 0 ) = 𝑌) |
19 | 15, 18 | neeqtrd 3010 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → (𝐴‘𝑋) ≠ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 –1-1→wf1 6476 ‘cfv 6479 Basecbs 17009 0gc0g 17247 Ringcrg 19878 algSccascl 21165 Poly1cpl1 21454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-of 7595 df-ofr 7596 df-om 7781 df-1st 7899 df-2nd 7900 df-supp 8048 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-map 8688 df-pm 8689 df-ixp 8757 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-fsupp 9227 df-oi 9367 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-z 12421 df-dec 12539 df-uz 12684 df-fz 13341 df-fzo 13484 df-seq 13823 df-hash 14146 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-sca 17075 df-vsca 17076 df-tset 17078 df-ple 17079 df-0g 17249 df-gsum 17250 df-mre 17392 df-mrc 17393 df-acs 17395 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-mhm 18527 df-submnd 18528 df-grp 18676 df-minusg 18677 df-sbg 18678 df-mulg 18797 df-subg 18848 df-ghm 18928 df-cntz 19019 df-cmn 19483 df-abl 19484 df-mgp 19816 df-ur 19833 df-ring 19880 df-subrg 20127 df-lmod 20231 df-lss 20300 df-ascl 21168 df-psr 21218 df-mvr 21219 df-mpl 21220 df-opsr 21222 df-psr1 21457 df-vr1 21458 df-ply1 21459 df-coe1 21460 |
This theorem is referenced by: deg1scl 25384 ply1nz 25392 |
Copyright terms: Public domain | W3C validator |