![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1scln0 | Structured version Visualization version GIF version |
Description: Nonzero scalars create nonzero polynomials. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
ply1scl.p | β’ π = (Poly1βπ ) |
ply1scl.a | β’ π΄ = (algScβπ) |
ply1scl0.z | β’ 0 = (0gβπ ) |
ply1scl0.y | β’ π = (0gβπ) |
ply1scln0.k | β’ πΎ = (Baseβπ ) |
Ref | Expression |
---|---|
ply1scln0 | β’ ((π β Ring β§ π β πΎ β§ π β 0 ) β (π΄βπ) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1scl.p | . . . . . . . 8 β’ π = (Poly1βπ ) | |
2 | ply1scl.a | . . . . . . . 8 β’ π΄ = (algScβπ) | |
3 | ply1scln0.k | . . . . . . . 8 β’ πΎ = (Baseβπ ) | |
4 | eqid 2732 | . . . . . . . 8 β’ (Baseβπ) = (Baseβπ) | |
5 | 1, 2, 3, 4 | ply1sclf1 21810 | . . . . . . 7 β’ (π β Ring β π΄:πΎβ1-1β(Baseβπ)) |
6 | 5 | adantr 481 | . . . . . 6 β’ ((π β Ring β§ π β πΎ) β π΄:πΎβ1-1β(Baseβπ)) |
7 | simpr 485 | . . . . . 6 β’ ((π β Ring β§ π β πΎ) β π β πΎ) | |
8 | ply1scl0.z | . . . . . . . 8 β’ 0 = (0gβπ ) | |
9 | 3, 8 | ring0cl 20083 | . . . . . . 7 β’ (π β Ring β 0 β πΎ) |
10 | 9 | adantr 481 | . . . . . 6 β’ ((π β Ring β§ π β πΎ) β 0 β πΎ) |
11 | f1fveq 7260 | . . . . . 6 β’ ((π΄:πΎβ1-1β(Baseβπ) β§ (π β πΎ β§ 0 β πΎ)) β ((π΄βπ) = (π΄β 0 ) β π = 0 )) | |
12 | 6, 7, 10, 11 | syl12anc 835 | . . . . 5 β’ ((π β Ring β§ π β πΎ) β ((π΄βπ) = (π΄β 0 ) β π = 0 )) |
13 | 12 | biimpd 228 | . . . 4 β’ ((π β Ring β§ π β πΎ) β ((π΄βπ) = (π΄β 0 ) β π = 0 )) |
14 | 13 | necon3d 2961 | . . 3 β’ ((π β Ring β§ π β πΎ) β (π β 0 β (π΄βπ) β (π΄β 0 ))) |
15 | 14 | 3impia 1117 | . 2 β’ ((π β Ring β§ π β πΎ β§ π β 0 ) β (π΄βπ) β (π΄β 0 )) |
16 | ply1scl0.y | . . . 4 β’ π = (0gβπ) | |
17 | 1, 2, 8, 16 | ply1scl0 21811 | . . 3 β’ (π β Ring β (π΄β 0 ) = π) |
18 | 17 | 3ad2ant1 1133 | . 2 β’ ((π β Ring β§ π β πΎ β§ π β 0 ) β (π΄β 0 ) = π) |
19 | 15, 18 | neeqtrd 3010 | 1 β’ ((π β Ring β§ π β πΎ β§ π β 0 ) β (π΄βπ) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 β1-1βwf1 6540 βcfv 6543 Basecbs 17143 0gc0g 17384 Ringcrg 20055 algSccascl 21406 Poly1cpl1 21700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-ofr 7670 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-sup 9436 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-fzo 13627 df-seq 13966 df-hash 14290 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17386 df-gsum 17387 df-prds 17392 df-pws 17394 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mhm 18670 df-submnd 18671 df-grp 18821 df-minusg 18822 df-sbg 18823 df-mulg 18950 df-subg 19002 df-ghm 19089 df-cntz 19180 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-subrg 20316 df-lmod 20472 df-lss 20542 df-ascl 21409 df-psr 21461 df-mvr 21462 df-mpl 21463 df-opsr 21465 df-psr1 21703 df-vr1 21704 df-ply1 21705 df-coe1 21706 |
This theorem is referenced by: deg1scl 25630 ply1nz 25638 deg1le0eq0 32650 |
Copyright terms: Public domain | W3C validator |