Step | Hyp | Ref
| Expression |
1 | | lnatex.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
2 | | eqid 2739 |
. . . 4
⊢
(join‘𝐾) =
(join‘𝐾) |
3 | | lnatex.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
4 | | lnatex.n |
. . . 4
⊢ 𝑁 = (Lines‘𝐾) |
5 | | lnatex.m |
. . . 4
⊢ 𝑀 = (pmap‘𝐾) |
6 | 1, 2, 3, 4, 5 | isline3 37769 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) ∈ 𝑁 ↔ ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠)))) |
7 | 6 | biimp3a 1467 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠))) |
8 | | simpl2r 1225 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠 ∈ 𝐴) |
9 | | simpl3l 1226 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑟 ≠ 𝑠) |
10 | 9 | necomd 3000 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠 ≠ 𝑟) |
11 | | simpr 484 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑟 = 𝑃) |
12 | 10, 11 | neeqtrd 3014 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠 ≠ 𝑃) |
13 | | simpl11 1246 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝐾 ∈ HL) |
14 | | simpl2l 1224 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑟 ∈ 𝐴) |
15 | | lnatex.l |
. . . . . . . . 9
⊢ ≤ =
(le‘𝐾) |
16 | 15, 2, 3 | hlatlej2 37369 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) → 𝑠 ≤ (𝑟(join‘𝐾)𝑠)) |
17 | 13, 14, 8, 16 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠 ≤ (𝑟(join‘𝐾)𝑠)) |
18 | | simpl3r 1227 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑋 = (𝑟(join‘𝐾)𝑠)) |
19 | 17, 18 | breqtrrd 5106 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠 ≤ 𝑋) |
20 | | neeq1 3007 |
. . . . . . . 8
⊢ (𝑞 = 𝑠 → (𝑞 ≠ 𝑃 ↔ 𝑠 ≠ 𝑃)) |
21 | | breq1 5081 |
. . . . . . . 8
⊢ (𝑞 = 𝑠 → (𝑞 ≤ 𝑋 ↔ 𝑠 ≤ 𝑋)) |
22 | 20, 21 | anbi12d 630 |
. . . . . . 7
⊢ (𝑞 = 𝑠 → ((𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋) ↔ (𝑠 ≠ 𝑃 ∧ 𝑠 ≤ 𝑋))) |
23 | 22 | rspcev 3560 |
. . . . . 6
⊢ ((𝑠 ∈ 𝐴 ∧ (𝑠 ≠ 𝑃 ∧ 𝑠 ≤ 𝑋)) → ∃𝑞 ∈ 𝐴 (𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋)) |
24 | 8, 12, 19, 23 | syl12anc 833 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → ∃𝑞 ∈ 𝐴 (𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋)) |
25 | | simpl2l 1224 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 ≠ 𝑃) → 𝑟 ∈ 𝐴) |
26 | | simpr 484 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 ≠ 𝑃) → 𝑟 ≠ 𝑃) |
27 | | simpl11 1246 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 ≠ 𝑃) → 𝐾 ∈ HL) |
28 | | simpl2r 1225 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 ≠ 𝑃) → 𝑠 ∈ 𝐴) |
29 | 15, 2, 3 | hlatlej1 37368 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) → 𝑟 ≤ (𝑟(join‘𝐾)𝑠)) |
30 | 27, 25, 28, 29 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 ≠ 𝑃) → 𝑟 ≤ (𝑟(join‘𝐾)𝑠)) |
31 | | simpl3r 1227 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 ≠ 𝑃) → 𝑋 = (𝑟(join‘𝐾)𝑠)) |
32 | 30, 31 | breqtrrd 5106 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 ≠ 𝑃) → 𝑟 ≤ 𝑋) |
33 | | neeq1 3007 |
. . . . . . . 8
⊢ (𝑞 = 𝑟 → (𝑞 ≠ 𝑃 ↔ 𝑟 ≠ 𝑃)) |
34 | | breq1 5081 |
. . . . . . . 8
⊢ (𝑞 = 𝑟 → (𝑞 ≤ 𝑋 ↔ 𝑟 ≤ 𝑋)) |
35 | 33, 34 | anbi12d 630 |
. . . . . . 7
⊢ (𝑞 = 𝑟 → ((𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋) ↔ (𝑟 ≠ 𝑃 ∧ 𝑟 ≤ 𝑋))) |
36 | 35 | rspcev 3560 |
. . . . . 6
⊢ ((𝑟 ∈ 𝐴 ∧ (𝑟 ≠ 𝑃 ∧ 𝑟 ≤ 𝑋)) → ∃𝑞 ∈ 𝐴 (𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋)) |
37 | 25, 26, 32, 36 | syl12anc 833 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 ≠ 𝑃) → ∃𝑞 ∈ 𝐴 (𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋)) |
38 | 24, 37 | pm2.61dane 3033 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠))) → ∃𝑞 ∈ 𝐴 (𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋)) |
39 | 38 | 3exp 1117 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) → ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) → ((𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠)) → ∃𝑞 ∈ 𝐴 (𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋)))) |
40 | 39 | rexlimdvv 3223 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) → (∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟(join‘𝐾)𝑠)) → ∃𝑞 ∈ 𝐴 (𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋))) |
41 | 7, 40 | mpd 15 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) → ∃𝑞 ∈ 𝐴 (𝑞 ≠ 𝑃 ∧ 𝑞 ≤ 𝑋)) |