Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnatexN Structured version   Visualization version   GIF version

Theorem lnatexN 37530
Description: There is an atom in a line different from any other. (Contributed by NM, 30-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnatex.b 𝐵 = (Base‘𝐾)
lnatex.l = (le‘𝐾)
lnatex.a 𝐴 = (Atoms‘𝐾)
lnatex.n 𝑁 = (Lines‘𝐾)
lnatex.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
lnatexN ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
Distinct variable groups:   𝐴,𝑞   ,𝑞   𝑃,𝑞   𝑋,𝑞
Allowed substitution hints:   𝐵(𝑞)   𝐾(𝑞)   𝑀(𝑞)   𝑁(𝑞)

Proof of Theorem lnatexN
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnatex.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2737 . . . 4 (join‘𝐾) = (join‘𝐾)
3 lnatex.a . . . 4 𝐴 = (Atoms‘𝐾)
4 lnatex.n . . . 4 𝑁 = (Lines‘𝐾)
5 lnatex.m . . . 4 𝑀 = (pmap‘𝐾)
61, 2, 3, 4, 5isline3 37527 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))))
76biimp3a 1471 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) → ∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠)))
8 simpl2r 1229 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠𝐴)
9 simpl3l 1230 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑟𝑠)
109necomd 2996 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠𝑟)
11 simpr 488 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑟 = 𝑃)
1210, 11neeqtrd 3010 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠𝑃)
13 simpl11 1250 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝐾 ∈ HL)
14 simpl2l 1228 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑟𝐴)
15 lnatex.l . . . . . . . . 9 = (le‘𝐾)
1615, 2, 3hlatlej2 37127 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑟𝐴𝑠𝐴) → 𝑠 (𝑟(join‘𝐾)𝑠))
1713, 14, 8, 16syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠 (𝑟(join‘𝐾)𝑠))
18 simpl3r 1231 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑋 = (𝑟(join‘𝐾)𝑠))
1917, 18breqtrrd 5081 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠 𝑋)
20 neeq1 3003 . . . . . . . 8 (𝑞 = 𝑠 → (𝑞𝑃𝑠𝑃))
21 breq1 5056 . . . . . . . 8 (𝑞 = 𝑠 → (𝑞 𝑋𝑠 𝑋))
2220, 21anbi12d 634 . . . . . . 7 (𝑞 = 𝑠 → ((𝑞𝑃𝑞 𝑋) ↔ (𝑠𝑃𝑠 𝑋)))
2322rspcev 3537 . . . . . 6 ((𝑠𝐴 ∧ (𝑠𝑃𝑠 𝑋)) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
248, 12, 19, 23syl12anc 837 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
25 simpl2l 1228 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑟𝐴)
26 simpr 488 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑟𝑃)
27 simpl11 1250 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝐾 ∈ HL)
28 simpl2r 1229 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑠𝐴)
2915, 2, 3hlatlej1 37126 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑟𝐴𝑠𝐴) → 𝑟 (𝑟(join‘𝐾)𝑠))
3027, 25, 28, 29syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑟 (𝑟(join‘𝐾)𝑠))
31 simpl3r 1231 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑋 = (𝑟(join‘𝐾)𝑠))
3230, 31breqtrrd 5081 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑟 𝑋)
33 neeq1 3003 . . . . . . . 8 (𝑞 = 𝑟 → (𝑞𝑃𝑟𝑃))
34 breq1 5056 . . . . . . . 8 (𝑞 = 𝑟 → (𝑞 𝑋𝑟 𝑋))
3533, 34anbi12d 634 . . . . . . 7 (𝑞 = 𝑟 → ((𝑞𝑃𝑞 𝑋) ↔ (𝑟𝑃𝑟 𝑋)))
3635rspcev 3537 . . . . . 6 ((𝑟𝐴 ∧ (𝑟𝑃𝑟 𝑋)) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
3725, 26, 32, 36syl12anc 837 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
3824, 37pm2.61dane 3029 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
39383exp 1121 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) → ((𝑟𝐴𝑠𝐴) → ((𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠)) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))))
4039rexlimdvv 3212 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) → (∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠)) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋)))
417, 40mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wrex 3062   class class class wbr 5053  cfv 6380  (class class class)co 7213  Basecbs 16760  lecple 16809  joincjn 17818  Atomscatm 37014  HLchlt 37101  Linesclines 37245  pmapcpmap 37248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-proset 17802  df-poset 17820  df-plt 17836  df-lub 17852  df-glb 17853  df-join 17854  df-meet 17855  df-p0 17931  df-lat 17938  df-clat 18005  df-oposet 36927  df-ol 36929  df-oml 36930  df-covers 37017  df-ats 37018  df-atl 37049  df-cvlat 37073  df-hlat 37102  df-lines 37252  df-pmap 37255
This theorem is referenced by:  lnjatN  37531
  Copyright terms: Public domain W3C validator