Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnatexN Structured version   Visualization version   GIF version

Theorem lnatexN 39803
Description: There is an atom in a line different from any other. (Contributed by NM, 30-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnatex.b 𝐵 = (Base‘𝐾)
lnatex.l = (le‘𝐾)
lnatex.a 𝐴 = (Atoms‘𝐾)
lnatex.n 𝑁 = (Lines‘𝐾)
lnatex.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
lnatexN ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
Distinct variable groups:   𝐴,𝑞   ,𝑞   𝑃,𝑞   𝑋,𝑞
Allowed substitution hints:   𝐵(𝑞)   𝐾(𝑞)   𝑀(𝑞)   𝑁(𝑞)

Proof of Theorem lnatexN
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnatex.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2736 . . . 4 (join‘𝐾) = (join‘𝐾)
3 lnatex.a . . . 4 𝐴 = (Atoms‘𝐾)
4 lnatex.n . . . 4 𝑁 = (Lines‘𝐾)
5 lnatex.m . . . 4 𝑀 = (pmap‘𝐾)
61, 2, 3, 4, 5isline3 39800 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))))
76biimp3a 1471 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) → ∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠)))
8 simpl2r 1228 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠𝐴)
9 simpl3l 1229 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑟𝑠)
109necomd 2988 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠𝑟)
11 simpr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑟 = 𝑃)
1210, 11neeqtrd 3002 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠𝑃)
13 simpl11 1249 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝐾 ∈ HL)
14 simpl2l 1227 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑟𝐴)
15 lnatex.l . . . . . . . . 9 = (le‘𝐾)
1615, 2, 3hlatlej2 39399 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑟𝐴𝑠𝐴) → 𝑠 (𝑟(join‘𝐾)𝑠))
1713, 14, 8, 16syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠 (𝑟(join‘𝐾)𝑠))
18 simpl3r 1230 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑋 = (𝑟(join‘𝐾)𝑠))
1917, 18breqtrrd 5152 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠 𝑋)
20 neeq1 2995 . . . . . . . 8 (𝑞 = 𝑠 → (𝑞𝑃𝑠𝑃))
21 breq1 5127 . . . . . . . 8 (𝑞 = 𝑠 → (𝑞 𝑋𝑠 𝑋))
2220, 21anbi12d 632 . . . . . . 7 (𝑞 = 𝑠 → ((𝑞𝑃𝑞 𝑋) ↔ (𝑠𝑃𝑠 𝑋)))
2322rspcev 3606 . . . . . 6 ((𝑠𝐴 ∧ (𝑠𝑃𝑠 𝑋)) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
248, 12, 19, 23syl12anc 836 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
25 simpl2l 1227 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑟𝐴)
26 simpr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑟𝑃)
27 simpl11 1249 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝐾 ∈ HL)
28 simpl2r 1228 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑠𝐴)
2915, 2, 3hlatlej1 39398 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑟𝐴𝑠𝐴) → 𝑟 (𝑟(join‘𝐾)𝑠))
3027, 25, 28, 29syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑟 (𝑟(join‘𝐾)𝑠))
31 simpl3r 1230 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑋 = (𝑟(join‘𝐾)𝑠))
3230, 31breqtrrd 5152 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑟 𝑋)
33 neeq1 2995 . . . . . . . 8 (𝑞 = 𝑟 → (𝑞𝑃𝑟𝑃))
34 breq1 5127 . . . . . . . 8 (𝑞 = 𝑟 → (𝑞 𝑋𝑟 𝑋))
3533, 34anbi12d 632 . . . . . . 7 (𝑞 = 𝑟 → ((𝑞𝑃𝑞 𝑋) ↔ (𝑟𝑃𝑟 𝑋)))
3635rspcev 3606 . . . . . 6 ((𝑟𝐴 ∧ (𝑟𝑃𝑟 𝑋)) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
3725, 26, 32, 36syl12anc 836 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
3824, 37pm2.61dane 3020 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
39383exp 1119 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) → ((𝑟𝐴𝑠𝐴) → ((𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠)) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))))
4039rexlimdvv 3201 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) → (∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠)) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋)))
417, 40mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wrex 3061   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  lecple 17283  joincjn 18328  Atomscatm 39286  HLchlt 39373  Linesclines 39518  pmapcpmap 39521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-lat 18447  df-clat 18514  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374  df-lines 39525  df-pmap 39528
This theorem is referenced by:  lnjatN  39804
  Copyright terms: Public domain W3C validator