Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnatexN Structured version   Visualization version   GIF version

Theorem lnatexN 37993
Description: There is an atom in a line different from any other. (Contributed by NM, 30-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnatex.b 𝐵 = (Base‘𝐾)
lnatex.l = (le‘𝐾)
lnatex.a 𝐴 = (Atoms‘𝐾)
lnatex.n 𝑁 = (Lines‘𝐾)
lnatex.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
lnatexN ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
Distinct variable groups:   𝐴,𝑞   ,𝑞   𝑃,𝑞   𝑋,𝑞
Allowed substitution hints:   𝐵(𝑞)   𝐾(𝑞)   𝑀(𝑞)   𝑁(𝑞)

Proof of Theorem lnatexN
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnatex.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2736 . . . 4 (join‘𝐾) = (join‘𝐾)
3 lnatex.a . . . 4 𝐴 = (Atoms‘𝐾)
4 lnatex.n . . . 4 𝑁 = (Lines‘𝐾)
5 lnatex.m . . . 4 𝑀 = (pmap‘𝐾)
61, 2, 3, 4, 5isline3 37990 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))))
76biimp3a 1469 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) → ∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠)))
8 simpl2r 1227 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠𝐴)
9 simpl3l 1228 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑟𝑠)
109necomd 2997 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠𝑟)
11 simpr 486 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑟 = 𝑃)
1210, 11neeqtrd 3011 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠𝑃)
13 simpl11 1248 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝐾 ∈ HL)
14 simpl2l 1226 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑟𝐴)
15 lnatex.l . . . . . . . . 9 = (le‘𝐾)
1615, 2, 3hlatlej2 37590 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑟𝐴𝑠𝐴) → 𝑠 (𝑟(join‘𝐾)𝑠))
1713, 14, 8, 16syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠 (𝑟(join‘𝐾)𝑠))
18 simpl3r 1229 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑋 = (𝑟(join‘𝐾)𝑠))
1917, 18breqtrrd 5109 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠 𝑋)
20 neeq1 3004 . . . . . . . 8 (𝑞 = 𝑠 → (𝑞𝑃𝑠𝑃))
21 breq1 5084 . . . . . . . 8 (𝑞 = 𝑠 → (𝑞 𝑋𝑠 𝑋))
2220, 21anbi12d 632 . . . . . . 7 (𝑞 = 𝑠 → ((𝑞𝑃𝑞 𝑋) ↔ (𝑠𝑃𝑠 𝑋)))
2322rspcev 3566 . . . . . 6 ((𝑠𝐴 ∧ (𝑠𝑃𝑠 𝑋)) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
248, 12, 19, 23syl12anc 835 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
25 simpl2l 1226 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑟𝐴)
26 simpr 486 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑟𝑃)
27 simpl11 1248 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝐾 ∈ HL)
28 simpl2r 1227 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑠𝐴)
2915, 2, 3hlatlej1 37589 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑟𝐴𝑠𝐴) → 𝑟 (𝑟(join‘𝐾)𝑠))
3027, 25, 28, 29syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑟 (𝑟(join‘𝐾)𝑠))
31 simpl3r 1229 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑋 = (𝑟(join‘𝐾)𝑠))
3230, 31breqtrrd 5109 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑟 𝑋)
33 neeq1 3004 . . . . . . . 8 (𝑞 = 𝑟 → (𝑞𝑃𝑟𝑃))
34 breq1 5084 . . . . . . . 8 (𝑞 = 𝑟 → (𝑞 𝑋𝑟 𝑋))
3533, 34anbi12d 632 . . . . . . 7 (𝑞 = 𝑟 → ((𝑞𝑃𝑞 𝑋) ↔ (𝑟𝑃𝑟 𝑋)))
3635rspcev 3566 . . . . . 6 ((𝑟𝐴 ∧ (𝑟𝑃𝑟 𝑋)) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
3725, 26, 32, 36syl12anc 835 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
3824, 37pm2.61dane 3030 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
39383exp 1119 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) → ((𝑟𝐴𝑠𝐴) → ((𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠)) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))))
4039rexlimdvv 3201 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) → (∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠)) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋)))
417, 40mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  wne 2941  wrex 3071   class class class wbr 5081  cfv 6458  (class class class)co 7307  Basecbs 16961  lecple 17018  joincjn 18078  Atomscatm 37477  HLchlt 37564  Linesclines 37708  pmapcpmap 37711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-proset 18062  df-poset 18080  df-plt 18097  df-lub 18113  df-glb 18114  df-join 18115  df-meet 18116  df-p0 18192  df-lat 18199  df-clat 18266  df-oposet 37390  df-ol 37392  df-oml 37393  df-covers 37480  df-ats 37481  df-atl 37512  df-cvlat 37536  df-hlat 37565  df-lines 37715  df-pmap 37718
This theorem is referenced by:  lnjatN  37994
  Copyright terms: Public domain W3C validator