Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnatexN Structured version   Visualization version   GIF version

Theorem lnatexN 39884
Description: There is an atom in a line different from any other. (Contributed by NM, 30-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnatex.b 𝐵 = (Base‘𝐾)
lnatex.l = (le‘𝐾)
lnatex.a 𝐴 = (Atoms‘𝐾)
lnatex.n 𝑁 = (Lines‘𝐾)
lnatex.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
lnatexN ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
Distinct variable groups:   𝐴,𝑞   ,𝑞   𝑃,𝑞   𝑋,𝑞
Allowed substitution hints:   𝐵(𝑞)   𝐾(𝑞)   𝑀(𝑞)   𝑁(𝑞)

Proof of Theorem lnatexN
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnatex.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2731 . . . 4 (join‘𝐾) = (join‘𝐾)
3 lnatex.a . . . 4 𝐴 = (Atoms‘𝐾)
4 lnatex.n . . . 4 𝑁 = (Lines‘𝐾)
5 lnatex.m . . . 4 𝑀 = (pmap‘𝐾)
61, 2, 3, 4, 5isline3 39881 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))))
76biimp3a 1471 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) → ∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠)))
8 simpl2r 1228 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠𝐴)
9 simpl3l 1229 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑟𝑠)
109necomd 2983 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠𝑟)
11 simpr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑟 = 𝑃)
1210, 11neeqtrd 2997 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠𝑃)
13 simpl11 1249 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝐾 ∈ HL)
14 simpl2l 1227 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑟𝐴)
15 lnatex.l . . . . . . . . 9 = (le‘𝐾)
1615, 2, 3hlatlej2 39481 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑟𝐴𝑠𝐴) → 𝑠 (𝑟(join‘𝐾)𝑠))
1713, 14, 8, 16syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠 (𝑟(join‘𝐾)𝑠))
18 simpl3r 1230 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑋 = (𝑟(join‘𝐾)𝑠))
1917, 18breqtrrd 5121 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → 𝑠 𝑋)
20 neeq1 2990 . . . . . . . 8 (𝑞 = 𝑠 → (𝑞𝑃𝑠𝑃))
21 breq1 5096 . . . . . . . 8 (𝑞 = 𝑠 → (𝑞 𝑋𝑠 𝑋))
2220, 21anbi12d 632 . . . . . . 7 (𝑞 = 𝑠 → ((𝑞𝑃𝑞 𝑋) ↔ (𝑠𝑃𝑠 𝑋)))
2322rspcev 3572 . . . . . 6 ((𝑠𝐴 ∧ (𝑠𝑃𝑠 𝑋)) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
248, 12, 19, 23syl12anc 836 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟 = 𝑃) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
25 simpl2l 1227 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑟𝐴)
26 simpr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑟𝑃)
27 simpl11 1249 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝐾 ∈ HL)
28 simpl2r 1228 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑠𝐴)
2915, 2, 3hlatlej1 39480 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑟𝐴𝑠𝐴) → 𝑟 (𝑟(join‘𝐾)𝑠))
3027, 25, 28, 29syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑟 (𝑟(join‘𝐾)𝑠))
31 simpl3r 1230 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑋 = (𝑟(join‘𝐾)𝑠))
3230, 31breqtrrd 5121 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → 𝑟 𝑋)
33 neeq1 2990 . . . . . . . 8 (𝑞 = 𝑟 → (𝑞𝑃𝑟𝑃))
34 breq1 5096 . . . . . . . 8 (𝑞 = 𝑟 → (𝑞 𝑋𝑟 𝑋))
3533, 34anbi12d 632 . . . . . . 7 (𝑞 = 𝑟 → ((𝑞𝑃𝑞 𝑋) ↔ (𝑟𝑃𝑟 𝑋)))
3635rspcev 3572 . . . . . 6 ((𝑟𝐴 ∧ (𝑟𝑃𝑟 𝑋)) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
3725, 26, 32, 36syl12anc 836 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) ∧ 𝑟𝑃) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
3824, 37pm2.61dane 3015 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠))) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
39383exp 1119 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) → ((𝑟𝐴𝑠𝐴) → ((𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠)) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))))
4039rexlimdvv 3188 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) → (∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟(join‘𝐾)𝑠)) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋)))
417, 40mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) → ∃𝑞𝐴 (𝑞𝑃𝑞 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056   class class class wbr 5093  cfv 6487  (class class class)co 7352  Basecbs 17126  lecple 17174  joincjn 18223  Atomscatm 39368  HLchlt 39455  Linesclines 39599  pmapcpmap 39602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-proset 18206  df-poset 18225  df-plt 18240  df-lub 18256  df-glb 18257  df-join 18258  df-meet 18259  df-p0 18335  df-lat 18344  df-clat 18411  df-oposet 39281  df-ol 39283  df-oml 39284  df-covers 39371  df-ats 39372  df-atl 39403  df-cvlat 39427  df-hlat 39456  df-lines 39606  df-pmap 39609
This theorem is referenced by:  lnjatN  39885
  Copyright terms: Public domain W3C validator