MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xov1plusxeqvd Structured version   Visualization version   GIF version

Theorem xov1plusxeqvd 12876
Description: A complex number 𝑋 is positive real iff 𝑋 / (1 + 𝑋) is in (0(,)1). Deduction form. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
xov1plusxeqvd.1 (𝜑𝑋 ∈ ℂ)
xov1plusxeqvd.2 (𝜑𝑋 ≠ -1)
Assertion
Ref Expression
xov1plusxeqvd (𝜑 → (𝑋 ∈ ℝ+ ↔ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)))

Proof of Theorem xov1plusxeqvd
StepHypRef Expression
1 simpr 488 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ+)
21rpred 12419 . . . 4 ((𝜑𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ)
3 1rp 12381 . . . . . 6 1 ∈ ℝ+
43a1i 11 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → 1 ∈ ℝ+)
54, 1rpaddcld 12434 . . . 4 ((𝜑𝑋 ∈ ℝ+) → (1 + 𝑋) ∈ ℝ+)
62, 5rerpdivcld 12450 . . 3 ((𝜑𝑋 ∈ ℝ+) → (𝑋 / (1 + 𝑋)) ∈ ℝ)
75rprecred 12430 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → (1 / (1 + 𝑋)) ∈ ℝ)
8 1red 10631 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → 1 ∈ ℝ)
9 0red 10633 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → 0 ∈ ℝ)
108, 2readdcld 10659 . . . . . . . 8 ((𝜑𝑋 ∈ ℝ+) → (1 + 𝑋) ∈ ℝ)
118, 1ltaddrpd 12452 . . . . . . . 8 ((𝜑𝑋 ∈ ℝ+) → 1 < (1 + 𝑋))
12 recgt1i 11526 . . . . . . . 8 (((1 + 𝑋) ∈ ℝ ∧ 1 < (1 + 𝑋)) → (0 < (1 / (1 + 𝑋)) ∧ (1 / (1 + 𝑋)) < 1))
1310, 11, 12syl2anc 587 . . . . . . 7 ((𝜑𝑋 ∈ ℝ+) → (0 < (1 / (1 + 𝑋)) ∧ (1 / (1 + 𝑋)) < 1))
1413simprd 499 . . . . . 6 ((𝜑𝑋 ∈ ℝ+) → (1 / (1 + 𝑋)) < 1)
15 1m0e1 11746 . . . . . 6 (1 − 0) = 1
1614, 15breqtrrdi 5072 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → (1 / (1 + 𝑋)) < (1 − 0))
177, 8, 9, 16ltsub13d 11235 . . . 4 ((𝜑𝑋 ∈ ℝ+) → 0 < (1 − (1 / (1 + 𝑋))))
18 1cnd 10625 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
19 xov1plusxeqvd.1 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
2018, 19addcld 10649 . . . . . . 7 (𝜑 → (1 + 𝑋) ∈ ℂ)
2118negcld 10973 . . . . . . . . 9 (𝜑 → -1 ∈ ℂ)
22 xov1plusxeqvd.2 . . . . . . . . 9 (𝜑𝑋 ≠ -1)
2318, 19, 21, 22addneintrd 10836 . . . . . . . 8 (𝜑 → (1 + 𝑋) ≠ (1 + -1))
24 1pneg1e0 11744 . . . . . . . . 9 (1 + -1) = 0
2524a1i 11 . . . . . . . 8 (𝜑 → (1 + -1) = 0)
2623, 25neeqtrd 3056 . . . . . . 7 (𝜑 → (1 + 𝑋) ≠ 0)
2720, 18, 20, 26divsubdird 11444 . . . . . 6 (𝜑 → (((1 + 𝑋) − 1) / (1 + 𝑋)) = (((1 + 𝑋) / (1 + 𝑋)) − (1 / (1 + 𝑋))))
2818, 19pncan2d 10988 . . . . . . 7 (𝜑 → ((1 + 𝑋) − 1) = 𝑋)
2928oveq1d 7150 . . . . . 6 (𝜑 → (((1 + 𝑋) − 1) / (1 + 𝑋)) = (𝑋 / (1 + 𝑋)))
3020, 26dividd 11403 . . . . . . 7 (𝜑 → ((1 + 𝑋) / (1 + 𝑋)) = 1)
3130oveq1d 7150 . . . . . 6 (𝜑 → (((1 + 𝑋) / (1 + 𝑋)) − (1 / (1 + 𝑋))) = (1 − (1 / (1 + 𝑋))))
3227, 29, 313eqtr3d 2841 . . . . 5 (𝜑 → (𝑋 / (1 + 𝑋)) = (1 − (1 / (1 + 𝑋))))
3332adantr 484 . . . 4 ((𝜑𝑋 ∈ ℝ+) → (𝑋 / (1 + 𝑋)) = (1 − (1 / (1 + 𝑋))))
3417, 33breqtrrd 5058 . . 3 ((𝜑𝑋 ∈ ℝ+) → 0 < (𝑋 / (1 + 𝑋)))
35 1m1e0 11697 . . . . . 6 (1 − 1) = 0
3613simpld 498 . . . . . 6 ((𝜑𝑋 ∈ ℝ+) → 0 < (1 / (1 + 𝑋)))
3735, 36eqbrtrid 5065 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → (1 − 1) < (1 / (1 + 𝑋)))
388, 8, 7, 37ltsub23d 11234 . . . 4 ((𝜑𝑋 ∈ ℝ+) → (1 − (1 / (1 + 𝑋))) < 1)
3933, 38eqbrtrd 5052 . . 3 ((𝜑𝑋 ∈ ℝ+) → (𝑋 / (1 + 𝑋)) < 1)
40 0xr 10677 . . . 4 0 ∈ ℝ*
41 1xr 10689 . . . 4 1 ∈ ℝ*
42 elioo2 12767 . . . 4 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑋 / (1 + 𝑋)) ∈ (0(,)1) ↔ ((𝑋 / (1 + 𝑋)) ∈ ℝ ∧ 0 < (𝑋 / (1 + 𝑋)) ∧ (𝑋 / (1 + 𝑋)) < 1)))
4340, 41, 42mp2an 691 . . 3 ((𝑋 / (1 + 𝑋)) ∈ (0(,)1) ↔ ((𝑋 / (1 + 𝑋)) ∈ ℝ ∧ 0 < (𝑋 / (1 + 𝑋)) ∧ (𝑋 / (1 + 𝑋)) < 1))
446, 34, 39, 43syl3anbrc 1340 . 2 ((𝜑𝑋 ∈ ℝ+) → (𝑋 / (1 + 𝑋)) ∈ (0(,)1))
4528adantr 484 . . . 4 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → ((1 + 𝑋) − 1) = 𝑋)
4620adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 + 𝑋) ∈ ℂ)
4726adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 + 𝑋) ≠ 0)
4846, 47recrecd 11402 . . . . . 6 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 / (1 + 𝑋))) = (1 + 𝑋))
4920, 19, 20, 26divsubdird 11444 . . . . . . . . . . 11 (𝜑 → (((1 + 𝑋) − 𝑋) / (1 + 𝑋)) = (((1 + 𝑋) / (1 + 𝑋)) − (𝑋 / (1 + 𝑋))))
5018, 19pncand 10987 . . . . . . . . . . . 12 (𝜑 → ((1 + 𝑋) − 𝑋) = 1)
5150oveq1d 7150 . . . . . . . . . . 11 (𝜑 → (((1 + 𝑋) − 𝑋) / (1 + 𝑋)) = (1 / (1 + 𝑋)))
5230oveq1d 7150 . . . . . . . . . . 11 (𝜑 → (((1 + 𝑋) / (1 + 𝑋)) − (𝑋 / (1 + 𝑋))) = (1 − (𝑋 / (1 + 𝑋))))
5349, 51, 523eqtr3d 2841 . . . . . . . . . 10 (𝜑 → (1 / (1 + 𝑋)) = (1 − (𝑋 / (1 + 𝑋))))
5453adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 + 𝑋)) = (1 − (𝑋 / (1 + 𝑋))))
55 1red 10631 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 1 ∈ ℝ)
56 simpr 488 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (𝑋 / (1 + 𝑋)) ∈ (0(,)1))
5756, 43sylib 221 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → ((𝑋 / (1 + 𝑋)) ∈ ℝ ∧ 0 < (𝑋 / (1 + 𝑋)) ∧ (𝑋 / (1 + 𝑋)) < 1))
5857simp1d 1139 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (𝑋 / (1 + 𝑋)) ∈ ℝ)
5955, 58resubcld 11057 . . . . . . . . 9 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 − (𝑋 / (1 + 𝑋))) ∈ ℝ)
6054, 59eqeltrd 2890 . . . . . . . 8 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 + 𝑋)) ∈ ℝ)
61 0red 10633 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 0 ∈ ℝ)
6257simp3d 1141 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (𝑋 / (1 + 𝑋)) < 1)
6362, 15breqtrrdi 5072 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (𝑋 / (1 + 𝑋)) < (1 − 0))
6458, 55, 61, 63ltsub13d 11235 . . . . . . . . 9 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 0 < (1 − (𝑋 / (1 + 𝑋))))
6564, 54breqtrrd 5058 . . . . . . . 8 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 0 < (1 / (1 + 𝑋)))
6660, 65elrpd 12416 . . . . . . 7 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 + 𝑋)) ∈ ℝ+)
6766rprecred 12430 . . . . . 6 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 / (1 + 𝑋))) ∈ ℝ)
6848, 67eqeltrrd 2891 . . . . 5 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 + 𝑋) ∈ ℝ)
6968, 55resubcld 11057 . . . 4 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → ((1 + 𝑋) − 1) ∈ ℝ)
7045, 69eqeltrrd 2891 . . 3 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 𝑋 ∈ ℝ)
71 1p0e1 11749 . . . . 5 (1 + 0) = 1
7257simp2d 1140 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 0 < (𝑋 / (1 + 𝑋)))
7335, 72eqbrtrid 5065 . . . . . . . . 9 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 − 1) < (𝑋 / (1 + 𝑋)))
7455, 55, 58, 73ltsub23d 11234 . . . . . . . 8 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 − (𝑋 / (1 + 𝑋))) < 1)
7554, 74eqbrtrd 5052 . . . . . . 7 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 + 𝑋)) < 1)
7666reclt1d 12432 . . . . . . 7 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → ((1 / (1 + 𝑋)) < 1 ↔ 1 < (1 / (1 / (1 + 𝑋)))))
7775, 76mpbid 235 . . . . . 6 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 1 < (1 / (1 / (1 + 𝑋))))
7877, 48breqtrd 5056 . . . . 5 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 1 < (1 + 𝑋))
7971, 78eqbrtrid 5065 . . . 4 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 + 0) < (1 + 𝑋))
8061, 70, 55ltadd2d 10785 . . . 4 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (0 < 𝑋 ↔ (1 + 0) < (1 + 𝑋)))
8179, 80mpbird 260 . . 3 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 0 < 𝑋)
8270, 81elrpd 12416 . 2 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 𝑋 ∈ ℝ+)
8344, 82impbida 800 1 (𝜑 → (𝑋 ∈ ℝ+ ↔ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  *cxr 10663   < clt 10664  cmin 10859  -cneg 10860   / cdiv 11286  +crp 12377  (,)cioo 12726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-rp 12378  df-ioo 12730
This theorem is referenced by:  angpieqvdlem  25414
  Copyright terms: Public domain W3C validator