MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xov1plusxeqvd Structured version   Visualization version   GIF version

Theorem xov1plusxeqvd 13558
Description: A complex number 𝑋 is positive real iff 𝑋 / (1 + 𝑋) is in (0(,)1). Deduction form. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
xov1plusxeqvd.1 (𝜑𝑋 ∈ ℂ)
xov1plusxeqvd.2 (𝜑𝑋 ≠ -1)
Assertion
Ref Expression
xov1plusxeqvd (𝜑 → (𝑋 ∈ ℝ+ ↔ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)))

Proof of Theorem xov1plusxeqvd
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ+)
21rpred 13099 . . . 4 ((𝜑𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ)
3 1rp 13061 . . . . . 6 1 ∈ ℝ+
43a1i 11 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → 1 ∈ ℝ+)
54, 1rpaddcld 13114 . . . 4 ((𝜑𝑋 ∈ ℝ+) → (1 + 𝑋) ∈ ℝ+)
62, 5rerpdivcld 13130 . . 3 ((𝜑𝑋 ∈ ℝ+) → (𝑋 / (1 + 𝑋)) ∈ ℝ)
75rprecred 13110 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → (1 / (1 + 𝑋)) ∈ ℝ)
8 1red 11291 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → 1 ∈ ℝ)
9 0red 11293 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → 0 ∈ ℝ)
108, 2readdcld 11319 . . . . . . . 8 ((𝜑𝑋 ∈ ℝ+) → (1 + 𝑋) ∈ ℝ)
118, 1ltaddrpd 13132 . . . . . . . 8 ((𝜑𝑋 ∈ ℝ+) → 1 < (1 + 𝑋))
12 recgt1i 12192 . . . . . . . 8 (((1 + 𝑋) ∈ ℝ ∧ 1 < (1 + 𝑋)) → (0 < (1 / (1 + 𝑋)) ∧ (1 / (1 + 𝑋)) < 1))
1310, 11, 12syl2anc 583 . . . . . . 7 ((𝜑𝑋 ∈ ℝ+) → (0 < (1 / (1 + 𝑋)) ∧ (1 / (1 + 𝑋)) < 1))
1413simprd 495 . . . . . 6 ((𝜑𝑋 ∈ ℝ+) → (1 / (1 + 𝑋)) < 1)
15 1m0e1 12414 . . . . . 6 (1 − 0) = 1
1614, 15breqtrrdi 5208 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → (1 / (1 + 𝑋)) < (1 − 0))
177, 8, 9, 16ltsub13d 11896 . . . 4 ((𝜑𝑋 ∈ ℝ+) → 0 < (1 − (1 / (1 + 𝑋))))
18 1cnd 11285 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
19 xov1plusxeqvd.1 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
2018, 19addcld 11309 . . . . . . 7 (𝜑 → (1 + 𝑋) ∈ ℂ)
2118negcld 11634 . . . . . . . . 9 (𝜑 → -1 ∈ ℂ)
22 xov1plusxeqvd.2 . . . . . . . . 9 (𝜑𝑋 ≠ -1)
2318, 19, 21, 22addneintrd 11497 . . . . . . . 8 (𝜑 → (1 + 𝑋) ≠ (1 + -1))
24 1pneg1e0 12412 . . . . . . . . 9 (1 + -1) = 0
2524a1i 11 . . . . . . . 8 (𝜑 → (1 + -1) = 0)
2623, 25neeqtrd 3016 . . . . . . 7 (𝜑 → (1 + 𝑋) ≠ 0)
2720, 18, 20, 26divsubdird 12109 . . . . . 6 (𝜑 → (((1 + 𝑋) − 1) / (1 + 𝑋)) = (((1 + 𝑋) / (1 + 𝑋)) − (1 / (1 + 𝑋))))
2818, 19pncan2d 11649 . . . . . . 7 (𝜑 → ((1 + 𝑋) − 1) = 𝑋)
2928oveq1d 7463 . . . . . 6 (𝜑 → (((1 + 𝑋) − 1) / (1 + 𝑋)) = (𝑋 / (1 + 𝑋)))
3020, 26dividd 12068 . . . . . . 7 (𝜑 → ((1 + 𝑋) / (1 + 𝑋)) = 1)
3130oveq1d 7463 . . . . . 6 (𝜑 → (((1 + 𝑋) / (1 + 𝑋)) − (1 / (1 + 𝑋))) = (1 − (1 / (1 + 𝑋))))
3227, 29, 313eqtr3d 2788 . . . . 5 (𝜑 → (𝑋 / (1 + 𝑋)) = (1 − (1 / (1 + 𝑋))))
3332adantr 480 . . . 4 ((𝜑𝑋 ∈ ℝ+) → (𝑋 / (1 + 𝑋)) = (1 − (1 / (1 + 𝑋))))
3417, 33breqtrrd 5194 . . 3 ((𝜑𝑋 ∈ ℝ+) → 0 < (𝑋 / (1 + 𝑋)))
35 1m1e0 12365 . . . . . 6 (1 − 1) = 0
3613simpld 494 . . . . . 6 ((𝜑𝑋 ∈ ℝ+) → 0 < (1 / (1 + 𝑋)))
3735, 36eqbrtrid 5201 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → (1 − 1) < (1 / (1 + 𝑋)))
388, 8, 7, 37ltsub23d 11895 . . . 4 ((𝜑𝑋 ∈ ℝ+) → (1 − (1 / (1 + 𝑋))) < 1)
3933, 38eqbrtrd 5188 . . 3 ((𝜑𝑋 ∈ ℝ+) → (𝑋 / (1 + 𝑋)) < 1)
40 0xr 11337 . . . 4 0 ∈ ℝ*
41 1xr 11349 . . . 4 1 ∈ ℝ*
42 elioo2 13448 . . . 4 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑋 / (1 + 𝑋)) ∈ (0(,)1) ↔ ((𝑋 / (1 + 𝑋)) ∈ ℝ ∧ 0 < (𝑋 / (1 + 𝑋)) ∧ (𝑋 / (1 + 𝑋)) < 1)))
4340, 41, 42mp2an 691 . . 3 ((𝑋 / (1 + 𝑋)) ∈ (0(,)1) ↔ ((𝑋 / (1 + 𝑋)) ∈ ℝ ∧ 0 < (𝑋 / (1 + 𝑋)) ∧ (𝑋 / (1 + 𝑋)) < 1))
446, 34, 39, 43syl3anbrc 1343 . 2 ((𝜑𝑋 ∈ ℝ+) → (𝑋 / (1 + 𝑋)) ∈ (0(,)1))
4528adantr 480 . . . 4 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → ((1 + 𝑋) − 1) = 𝑋)
4620adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 + 𝑋) ∈ ℂ)
4726adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 + 𝑋) ≠ 0)
4846, 47recrecd 12067 . . . . . 6 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 / (1 + 𝑋))) = (1 + 𝑋))
4920, 19, 20, 26divsubdird 12109 . . . . . . . . . . 11 (𝜑 → (((1 + 𝑋) − 𝑋) / (1 + 𝑋)) = (((1 + 𝑋) / (1 + 𝑋)) − (𝑋 / (1 + 𝑋))))
5018, 19pncand 11648 . . . . . . . . . . . 12 (𝜑 → ((1 + 𝑋) − 𝑋) = 1)
5150oveq1d 7463 . . . . . . . . . . 11 (𝜑 → (((1 + 𝑋) − 𝑋) / (1 + 𝑋)) = (1 / (1 + 𝑋)))
5230oveq1d 7463 . . . . . . . . . . 11 (𝜑 → (((1 + 𝑋) / (1 + 𝑋)) − (𝑋 / (1 + 𝑋))) = (1 − (𝑋 / (1 + 𝑋))))
5349, 51, 523eqtr3d 2788 . . . . . . . . . 10 (𝜑 → (1 / (1 + 𝑋)) = (1 − (𝑋 / (1 + 𝑋))))
5453adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 + 𝑋)) = (1 − (𝑋 / (1 + 𝑋))))
55 1red 11291 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 1 ∈ ℝ)
56 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (𝑋 / (1 + 𝑋)) ∈ (0(,)1))
5756, 43sylib 218 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → ((𝑋 / (1 + 𝑋)) ∈ ℝ ∧ 0 < (𝑋 / (1 + 𝑋)) ∧ (𝑋 / (1 + 𝑋)) < 1))
5857simp1d 1142 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (𝑋 / (1 + 𝑋)) ∈ ℝ)
5955, 58resubcld 11718 . . . . . . . . 9 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 − (𝑋 / (1 + 𝑋))) ∈ ℝ)
6054, 59eqeltrd 2844 . . . . . . . 8 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 + 𝑋)) ∈ ℝ)
61 0red 11293 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 0 ∈ ℝ)
6257simp3d 1144 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (𝑋 / (1 + 𝑋)) < 1)
6362, 15breqtrrdi 5208 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (𝑋 / (1 + 𝑋)) < (1 − 0))
6458, 55, 61, 63ltsub13d 11896 . . . . . . . . 9 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 0 < (1 − (𝑋 / (1 + 𝑋))))
6564, 54breqtrrd 5194 . . . . . . . 8 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 0 < (1 / (1 + 𝑋)))
6660, 65elrpd 13096 . . . . . . 7 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 + 𝑋)) ∈ ℝ+)
6766rprecred 13110 . . . . . 6 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 / (1 + 𝑋))) ∈ ℝ)
6848, 67eqeltrrd 2845 . . . . 5 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 + 𝑋) ∈ ℝ)
6968, 55resubcld 11718 . . . 4 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → ((1 + 𝑋) − 1) ∈ ℝ)
7045, 69eqeltrrd 2845 . . 3 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 𝑋 ∈ ℝ)
71 1p0e1 12417 . . . . 5 (1 + 0) = 1
7257simp2d 1143 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 0 < (𝑋 / (1 + 𝑋)))
7335, 72eqbrtrid 5201 . . . . . . . . 9 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 − 1) < (𝑋 / (1 + 𝑋)))
7455, 55, 58, 73ltsub23d 11895 . . . . . . . 8 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 − (𝑋 / (1 + 𝑋))) < 1)
7554, 74eqbrtrd 5188 . . . . . . 7 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 + 𝑋)) < 1)
7666reclt1d 13112 . . . . . . 7 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → ((1 / (1 + 𝑋)) < 1 ↔ 1 < (1 / (1 / (1 + 𝑋)))))
7775, 76mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 1 < (1 / (1 / (1 + 𝑋))))
7877, 48breqtrd 5192 . . . . 5 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 1 < (1 + 𝑋))
7971, 78eqbrtrid 5201 . . . 4 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 + 0) < (1 + 𝑋))
8061, 70, 55ltadd2d 11446 . . . 4 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (0 < 𝑋 ↔ (1 + 0) < (1 + 𝑋)))
8179, 80mpbird 257 . . 3 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 0 < 𝑋)
8270, 81elrpd 13096 . 2 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 𝑋 ∈ ℝ+)
8344, 82impbida 800 1 (𝜑 → (𝑋 ∈ ℝ+ ↔ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  *cxr 11323   < clt 11324  cmin 11520  -cneg 11521   / cdiv 11947  +crp 13057  (,)cioo 13407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-rp 13058  df-ioo 13411
This theorem is referenced by:  angpieqvdlem  26889
  Copyright terms: Public domain W3C validator