MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xov1plusxeqvd Structured version   Visualization version   GIF version

Theorem xov1plusxeqvd 13539
Description: A complex number 𝑋 is positive real iff 𝑋 / (1 + 𝑋) is in (0(,)1). Deduction form. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
xov1plusxeqvd.1 (𝜑𝑋 ∈ ℂ)
xov1plusxeqvd.2 (𝜑𝑋 ≠ -1)
Assertion
Ref Expression
xov1plusxeqvd (𝜑 → (𝑋 ∈ ℝ+ ↔ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)))

Proof of Theorem xov1plusxeqvd
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ+)
21rpred 13078 . . . 4 ((𝜑𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ)
3 1rp 13039 . . . . . 6 1 ∈ ℝ+
43a1i 11 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → 1 ∈ ℝ+)
54, 1rpaddcld 13093 . . . 4 ((𝜑𝑋 ∈ ℝ+) → (1 + 𝑋) ∈ ℝ+)
62, 5rerpdivcld 13109 . . 3 ((𝜑𝑋 ∈ ℝ+) → (𝑋 / (1 + 𝑋)) ∈ ℝ)
75rprecred 13089 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → (1 / (1 + 𝑋)) ∈ ℝ)
8 1red 11263 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → 1 ∈ ℝ)
9 0red 11265 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → 0 ∈ ℝ)
108, 2readdcld 11291 . . . . . . . 8 ((𝜑𝑋 ∈ ℝ+) → (1 + 𝑋) ∈ ℝ)
118, 1ltaddrpd 13111 . . . . . . . 8 ((𝜑𝑋 ∈ ℝ+) → 1 < (1 + 𝑋))
12 recgt1i 12166 . . . . . . . 8 (((1 + 𝑋) ∈ ℝ ∧ 1 < (1 + 𝑋)) → (0 < (1 / (1 + 𝑋)) ∧ (1 / (1 + 𝑋)) < 1))
1310, 11, 12syl2anc 584 . . . . . . 7 ((𝜑𝑋 ∈ ℝ+) → (0 < (1 / (1 + 𝑋)) ∧ (1 / (1 + 𝑋)) < 1))
1413simprd 495 . . . . . 6 ((𝜑𝑋 ∈ ℝ+) → (1 / (1 + 𝑋)) < 1)
15 1m0e1 12388 . . . . . 6 (1 − 0) = 1
1614, 15breqtrrdi 5184 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → (1 / (1 + 𝑋)) < (1 − 0))
177, 8, 9, 16ltsub13d 11870 . . . 4 ((𝜑𝑋 ∈ ℝ+) → 0 < (1 − (1 / (1 + 𝑋))))
18 1cnd 11257 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
19 xov1plusxeqvd.1 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
2018, 19addcld 11281 . . . . . . 7 (𝜑 → (1 + 𝑋) ∈ ℂ)
2118negcld 11608 . . . . . . . . 9 (𝜑 → -1 ∈ ℂ)
22 xov1plusxeqvd.2 . . . . . . . . 9 (𝜑𝑋 ≠ -1)
2318, 19, 21, 22addneintrd 11469 . . . . . . . 8 (𝜑 → (1 + 𝑋) ≠ (1 + -1))
24 1pneg1e0 12386 . . . . . . . . 9 (1 + -1) = 0
2524a1i 11 . . . . . . . 8 (𝜑 → (1 + -1) = 0)
2623, 25neeqtrd 3009 . . . . . . 7 (𝜑 → (1 + 𝑋) ≠ 0)
2720, 18, 20, 26divsubdird 12083 . . . . . 6 (𝜑 → (((1 + 𝑋) − 1) / (1 + 𝑋)) = (((1 + 𝑋) / (1 + 𝑋)) − (1 / (1 + 𝑋))))
2818, 19pncan2d 11623 . . . . . . 7 (𝜑 → ((1 + 𝑋) − 1) = 𝑋)
2928oveq1d 7447 . . . . . 6 (𝜑 → (((1 + 𝑋) − 1) / (1 + 𝑋)) = (𝑋 / (1 + 𝑋)))
3020, 26dividd 12042 . . . . . . 7 (𝜑 → ((1 + 𝑋) / (1 + 𝑋)) = 1)
3130oveq1d 7447 . . . . . 6 (𝜑 → (((1 + 𝑋) / (1 + 𝑋)) − (1 / (1 + 𝑋))) = (1 − (1 / (1 + 𝑋))))
3227, 29, 313eqtr3d 2784 . . . . 5 (𝜑 → (𝑋 / (1 + 𝑋)) = (1 − (1 / (1 + 𝑋))))
3332adantr 480 . . . 4 ((𝜑𝑋 ∈ ℝ+) → (𝑋 / (1 + 𝑋)) = (1 − (1 / (1 + 𝑋))))
3417, 33breqtrrd 5170 . . 3 ((𝜑𝑋 ∈ ℝ+) → 0 < (𝑋 / (1 + 𝑋)))
35 1m1e0 12339 . . . . . 6 (1 − 1) = 0
3613simpld 494 . . . . . 6 ((𝜑𝑋 ∈ ℝ+) → 0 < (1 / (1 + 𝑋)))
3735, 36eqbrtrid 5177 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → (1 − 1) < (1 / (1 + 𝑋)))
388, 8, 7, 37ltsub23d 11869 . . . 4 ((𝜑𝑋 ∈ ℝ+) → (1 − (1 / (1 + 𝑋))) < 1)
3933, 38eqbrtrd 5164 . . 3 ((𝜑𝑋 ∈ ℝ+) → (𝑋 / (1 + 𝑋)) < 1)
40 0xr 11309 . . . 4 0 ∈ ℝ*
41 1xr 11321 . . . 4 1 ∈ ℝ*
42 elioo2 13429 . . . 4 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑋 / (1 + 𝑋)) ∈ (0(,)1) ↔ ((𝑋 / (1 + 𝑋)) ∈ ℝ ∧ 0 < (𝑋 / (1 + 𝑋)) ∧ (𝑋 / (1 + 𝑋)) < 1)))
4340, 41, 42mp2an 692 . . 3 ((𝑋 / (1 + 𝑋)) ∈ (0(,)1) ↔ ((𝑋 / (1 + 𝑋)) ∈ ℝ ∧ 0 < (𝑋 / (1 + 𝑋)) ∧ (𝑋 / (1 + 𝑋)) < 1))
446, 34, 39, 43syl3anbrc 1343 . 2 ((𝜑𝑋 ∈ ℝ+) → (𝑋 / (1 + 𝑋)) ∈ (0(,)1))
4528adantr 480 . . . 4 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → ((1 + 𝑋) − 1) = 𝑋)
4620adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 + 𝑋) ∈ ℂ)
4726adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 + 𝑋) ≠ 0)
4846, 47recrecd 12041 . . . . . 6 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 / (1 + 𝑋))) = (1 + 𝑋))
4920, 19, 20, 26divsubdird 12083 . . . . . . . . . . 11 (𝜑 → (((1 + 𝑋) − 𝑋) / (1 + 𝑋)) = (((1 + 𝑋) / (1 + 𝑋)) − (𝑋 / (1 + 𝑋))))
5018, 19pncand 11622 . . . . . . . . . . . 12 (𝜑 → ((1 + 𝑋) − 𝑋) = 1)
5150oveq1d 7447 . . . . . . . . . . 11 (𝜑 → (((1 + 𝑋) − 𝑋) / (1 + 𝑋)) = (1 / (1 + 𝑋)))
5230oveq1d 7447 . . . . . . . . . . 11 (𝜑 → (((1 + 𝑋) / (1 + 𝑋)) − (𝑋 / (1 + 𝑋))) = (1 − (𝑋 / (1 + 𝑋))))
5349, 51, 523eqtr3d 2784 . . . . . . . . . 10 (𝜑 → (1 / (1 + 𝑋)) = (1 − (𝑋 / (1 + 𝑋))))
5453adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 + 𝑋)) = (1 − (𝑋 / (1 + 𝑋))))
55 1red 11263 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 1 ∈ ℝ)
56 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (𝑋 / (1 + 𝑋)) ∈ (0(,)1))
5756, 43sylib 218 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → ((𝑋 / (1 + 𝑋)) ∈ ℝ ∧ 0 < (𝑋 / (1 + 𝑋)) ∧ (𝑋 / (1 + 𝑋)) < 1))
5857simp1d 1142 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (𝑋 / (1 + 𝑋)) ∈ ℝ)
5955, 58resubcld 11692 . . . . . . . . 9 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 − (𝑋 / (1 + 𝑋))) ∈ ℝ)
6054, 59eqeltrd 2840 . . . . . . . 8 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 + 𝑋)) ∈ ℝ)
61 0red 11265 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 0 ∈ ℝ)
6257simp3d 1144 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (𝑋 / (1 + 𝑋)) < 1)
6362, 15breqtrrdi 5184 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (𝑋 / (1 + 𝑋)) < (1 − 0))
6458, 55, 61, 63ltsub13d 11870 . . . . . . . . 9 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 0 < (1 − (𝑋 / (1 + 𝑋))))
6564, 54breqtrrd 5170 . . . . . . . 8 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 0 < (1 / (1 + 𝑋)))
6660, 65elrpd 13075 . . . . . . 7 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 + 𝑋)) ∈ ℝ+)
6766rprecred 13089 . . . . . 6 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 / (1 + 𝑋))) ∈ ℝ)
6848, 67eqeltrrd 2841 . . . . 5 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 + 𝑋) ∈ ℝ)
6968, 55resubcld 11692 . . . 4 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → ((1 + 𝑋) − 1) ∈ ℝ)
7045, 69eqeltrrd 2841 . . 3 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 𝑋 ∈ ℝ)
71 1p0e1 12391 . . . . 5 (1 + 0) = 1
7257simp2d 1143 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 0 < (𝑋 / (1 + 𝑋)))
7335, 72eqbrtrid 5177 . . . . . . . . 9 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 − 1) < (𝑋 / (1 + 𝑋)))
7455, 55, 58, 73ltsub23d 11869 . . . . . . . 8 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 − (𝑋 / (1 + 𝑋))) < 1)
7554, 74eqbrtrd 5164 . . . . . . 7 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 + 𝑋)) < 1)
7666reclt1d 13091 . . . . . . 7 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → ((1 / (1 + 𝑋)) < 1 ↔ 1 < (1 / (1 / (1 + 𝑋)))))
7775, 76mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 1 < (1 / (1 / (1 + 𝑋))))
7877, 48breqtrd 5168 . . . . 5 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 1 < (1 + 𝑋))
7971, 78eqbrtrid 5177 . . . 4 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 + 0) < (1 + 𝑋))
8061, 70, 55ltadd2d 11418 . . . 4 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (0 < 𝑋 ↔ (1 + 0) < (1 + 𝑋)))
8179, 80mpbird 257 . . 3 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 0 < 𝑋)
8270, 81elrpd 13075 . 2 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 𝑋 ∈ ℝ+)
8344, 82impbida 800 1 (𝜑 → (𝑋 ∈ ℝ+ ↔ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939   class class class wbr 5142  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156  1c1 11157   + caddc 11159  *cxr 11295   < clt 11296  cmin 11493  -cneg 11494   / cdiv 11921  +crp 13035  (,)cioo 13388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-rp 13036  df-ioo 13392
This theorem is referenced by:  angpieqvdlem  26872
  Copyright terms: Public domain W3C validator