MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xov1plusxeqvd Structured version   Visualization version   GIF version

Theorem xov1plusxeqvd 13401
Description: A complex number 𝑋 is positive real iff 𝑋 / (1 + 𝑋) is in (0(,)1). Deduction form. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
xov1plusxeqvd.1 (𝜑𝑋 ∈ ℂ)
xov1plusxeqvd.2 (𝜑𝑋 ≠ -1)
Assertion
Ref Expression
xov1plusxeqvd (𝜑 → (𝑋 ∈ ℝ+ ↔ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)))

Proof of Theorem xov1plusxeqvd
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ+)
21rpred 12937 . . . 4 ((𝜑𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ)
3 1rp 12897 . . . . . 6 1 ∈ ℝ+
43a1i 11 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → 1 ∈ ℝ+)
54, 1rpaddcld 12952 . . . 4 ((𝜑𝑋 ∈ ℝ+) → (1 + 𝑋) ∈ ℝ+)
62, 5rerpdivcld 12968 . . 3 ((𝜑𝑋 ∈ ℝ+) → (𝑋 / (1 + 𝑋)) ∈ ℝ)
75rprecred 12948 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → (1 / (1 + 𝑋)) ∈ ℝ)
8 1red 11116 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → 1 ∈ ℝ)
9 0red 11118 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → 0 ∈ ℝ)
108, 2readdcld 11144 . . . . . . . 8 ((𝜑𝑋 ∈ ℝ+) → (1 + 𝑋) ∈ ℝ)
118, 1ltaddrpd 12970 . . . . . . . 8 ((𝜑𝑋 ∈ ℝ+) → 1 < (1 + 𝑋))
12 recgt1i 12022 . . . . . . . 8 (((1 + 𝑋) ∈ ℝ ∧ 1 < (1 + 𝑋)) → (0 < (1 / (1 + 𝑋)) ∧ (1 / (1 + 𝑋)) < 1))
1310, 11, 12syl2anc 584 . . . . . . 7 ((𝜑𝑋 ∈ ℝ+) → (0 < (1 / (1 + 𝑋)) ∧ (1 / (1 + 𝑋)) < 1))
1413simprd 495 . . . . . 6 ((𝜑𝑋 ∈ ℝ+) → (1 / (1 + 𝑋)) < 1)
15 1m0e1 12244 . . . . . 6 (1 − 0) = 1
1614, 15breqtrrdi 5134 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → (1 / (1 + 𝑋)) < (1 − 0))
177, 8, 9, 16ltsub13d 11726 . . . 4 ((𝜑𝑋 ∈ ℝ+) → 0 < (1 − (1 / (1 + 𝑋))))
18 1cnd 11110 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
19 xov1plusxeqvd.1 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
2018, 19addcld 11134 . . . . . . 7 (𝜑 → (1 + 𝑋) ∈ ℂ)
2118negcld 11462 . . . . . . . . 9 (𝜑 → -1 ∈ ℂ)
22 xov1plusxeqvd.2 . . . . . . . . 9 (𝜑𝑋 ≠ -1)
2318, 19, 21, 22addneintrd 11323 . . . . . . . 8 (𝜑 → (1 + 𝑋) ≠ (1 + -1))
24 1pneg1e0 12242 . . . . . . . . 9 (1 + -1) = 0
2524a1i 11 . . . . . . . 8 (𝜑 → (1 + -1) = 0)
2623, 25neeqtrd 2994 . . . . . . 7 (𝜑 → (1 + 𝑋) ≠ 0)
2720, 18, 20, 26divsubdird 11939 . . . . . 6 (𝜑 → (((1 + 𝑋) − 1) / (1 + 𝑋)) = (((1 + 𝑋) / (1 + 𝑋)) − (1 / (1 + 𝑋))))
2818, 19pncan2d 11477 . . . . . . 7 (𝜑 → ((1 + 𝑋) − 1) = 𝑋)
2928oveq1d 7364 . . . . . 6 (𝜑 → (((1 + 𝑋) − 1) / (1 + 𝑋)) = (𝑋 / (1 + 𝑋)))
3020, 26dividd 11898 . . . . . . 7 (𝜑 → ((1 + 𝑋) / (1 + 𝑋)) = 1)
3130oveq1d 7364 . . . . . 6 (𝜑 → (((1 + 𝑋) / (1 + 𝑋)) − (1 / (1 + 𝑋))) = (1 − (1 / (1 + 𝑋))))
3227, 29, 313eqtr3d 2772 . . . . 5 (𝜑 → (𝑋 / (1 + 𝑋)) = (1 − (1 / (1 + 𝑋))))
3332adantr 480 . . . 4 ((𝜑𝑋 ∈ ℝ+) → (𝑋 / (1 + 𝑋)) = (1 − (1 / (1 + 𝑋))))
3417, 33breqtrrd 5120 . . 3 ((𝜑𝑋 ∈ ℝ+) → 0 < (𝑋 / (1 + 𝑋)))
35 1m1e0 12200 . . . . . 6 (1 − 1) = 0
3613simpld 494 . . . . . 6 ((𝜑𝑋 ∈ ℝ+) → 0 < (1 / (1 + 𝑋)))
3735, 36eqbrtrid 5127 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → (1 − 1) < (1 / (1 + 𝑋)))
388, 8, 7, 37ltsub23d 11725 . . . 4 ((𝜑𝑋 ∈ ℝ+) → (1 − (1 / (1 + 𝑋))) < 1)
3933, 38eqbrtrd 5114 . . 3 ((𝜑𝑋 ∈ ℝ+) → (𝑋 / (1 + 𝑋)) < 1)
40 0xr 11162 . . . 4 0 ∈ ℝ*
41 1xr 11174 . . . 4 1 ∈ ℝ*
42 elioo2 13289 . . . 4 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑋 / (1 + 𝑋)) ∈ (0(,)1) ↔ ((𝑋 / (1 + 𝑋)) ∈ ℝ ∧ 0 < (𝑋 / (1 + 𝑋)) ∧ (𝑋 / (1 + 𝑋)) < 1)))
4340, 41, 42mp2an 692 . . 3 ((𝑋 / (1 + 𝑋)) ∈ (0(,)1) ↔ ((𝑋 / (1 + 𝑋)) ∈ ℝ ∧ 0 < (𝑋 / (1 + 𝑋)) ∧ (𝑋 / (1 + 𝑋)) < 1))
446, 34, 39, 43syl3anbrc 1344 . 2 ((𝜑𝑋 ∈ ℝ+) → (𝑋 / (1 + 𝑋)) ∈ (0(,)1))
4528adantr 480 . . . 4 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → ((1 + 𝑋) − 1) = 𝑋)
4620adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 + 𝑋) ∈ ℂ)
4726adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 + 𝑋) ≠ 0)
4846, 47recrecd 11897 . . . . . 6 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 / (1 + 𝑋))) = (1 + 𝑋))
4920, 19, 20, 26divsubdird 11939 . . . . . . . . . . 11 (𝜑 → (((1 + 𝑋) − 𝑋) / (1 + 𝑋)) = (((1 + 𝑋) / (1 + 𝑋)) − (𝑋 / (1 + 𝑋))))
5018, 19pncand 11476 . . . . . . . . . . . 12 (𝜑 → ((1 + 𝑋) − 𝑋) = 1)
5150oveq1d 7364 . . . . . . . . . . 11 (𝜑 → (((1 + 𝑋) − 𝑋) / (1 + 𝑋)) = (1 / (1 + 𝑋)))
5230oveq1d 7364 . . . . . . . . . . 11 (𝜑 → (((1 + 𝑋) / (1 + 𝑋)) − (𝑋 / (1 + 𝑋))) = (1 − (𝑋 / (1 + 𝑋))))
5349, 51, 523eqtr3d 2772 . . . . . . . . . 10 (𝜑 → (1 / (1 + 𝑋)) = (1 − (𝑋 / (1 + 𝑋))))
5453adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 + 𝑋)) = (1 − (𝑋 / (1 + 𝑋))))
55 1red 11116 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 1 ∈ ℝ)
56 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (𝑋 / (1 + 𝑋)) ∈ (0(,)1))
5756, 43sylib 218 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → ((𝑋 / (1 + 𝑋)) ∈ ℝ ∧ 0 < (𝑋 / (1 + 𝑋)) ∧ (𝑋 / (1 + 𝑋)) < 1))
5857simp1d 1142 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (𝑋 / (1 + 𝑋)) ∈ ℝ)
5955, 58resubcld 11548 . . . . . . . . 9 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 − (𝑋 / (1 + 𝑋))) ∈ ℝ)
6054, 59eqeltrd 2828 . . . . . . . 8 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 + 𝑋)) ∈ ℝ)
61 0red 11118 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 0 ∈ ℝ)
6257simp3d 1144 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (𝑋 / (1 + 𝑋)) < 1)
6362, 15breqtrrdi 5134 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (𝑋 / (1 + 𝑋)) < (1 − 0))
6458, 55, 61, 63ltsub13d 11726 . . . . . . . . 9 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 0 < (1 − (𝑋 / (1 + 𝑋))))
6564, 54breqtrrd 5120 . . . . . . . 8 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 0 < (1 / (1 + 𝑋)))
6660, 65elrpd 12934 . . . . . . 7 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 + 𝑋)) ∈ ℝ+)
6766rprecred 12948 . . . . . 6 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 / (1 + 𝑋))) ∈ ℝ)
6848, 67eqeltrrd 2829 . . . . 5 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 + 𝑋) ∈ ℝ)
6968, 55resubcld 11548 . . . 4 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → ((1 + 𝑋) − 1) ∈ ℝ)
7045, 69eqeltrrd 2829 . . 3 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 𝑋 ∈ ℝ)
71 1p0e1 12247 . . . . 5 (1 + 0) = 1
7257simp2d 1143 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 0 < (𝑋 / (1 + 𝑋)))
7335, 72eqbrtrid 5127 . . . . . . . . 9 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 − 1) < (𝑋 / (1 + 𝑋)))
7455, 55, 58, 73ltsub23d 11725 . . . . . . . 8 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 − (𝑋 / (1 + 𝑋))) < 1)
7554, 74eqbrtrd 5114 . . . . . . 7 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 / (1 + 𝑋)) < 1)
7666reclt1d 12950 . . . . . . 7 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → ((1 / (1 + 𝑋)) < 1 ↔ 1 < (1 / (1 / (1 + 𝑋)))))
7775, 76mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 1 < (1 / (1 / (1 + 𝑋))))
7877, 48breqtrd 5118 . . . . 5 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 1 < (1 + 𝑋))
7971, 78eqbrtrid 5127 . . . 4 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (1 + 0) < (1 + 𝑋))
8061, 70, 55ltadd2d 11272 . . . 4 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → (0 < 𝑋 ↔ (1 + 0) < (1 + 𝑋)))
8179, 80mpbird 257 . . 3 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 0 < 𝑋)
8270, 81elrpd 12934 . 2 ((𝜑 ∧ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)) → 𝑋 ∈ ℝ+)
8344, 82impbida 800 1 (𝜑 → (𝑋 ∈ ℝ+ ↔ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012  *cxr 11148   < clt 11149  cmin 11347  -cneg 11348   / cdiv 11777  +crp 12893  (,)cioo 13248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-rp 12894  df-ioo 13252
This theorem is referenced by:  angpieqvdlem  26736
  Copyright terms: Public domain W3C validator